Abstract:
Provided is a FinFET including a substrate, at least one fin and at least one gate. A portion of the at least one fin is embedded in the substrate. The at least one fin includes, from bottom to top, a seed layer, a stress relaxation layer and a channel layer. The at least one gate is across the at least one fin. A method of forming a FinFET is further provided.
Abstract:
A semiconductor device comprises a semiconductor substrate and a semiconductor fin. The semiconductor substrate has an upper surface and a recess extending downwards into the semiconductor substrate from the upper surface. The semiconductor fin is disposed in the recess and extends upwards beyond the upper surface, wherein the semiconductor fin is directly in contact with semiconductor substrate, so as to form at least one semiconductor hetero-interface on a sidewall of the recess.
Abstract:
A method for fabricating semiconductor device is disclosed. The method includes the steps of: providing a substrate; forming a gate structure on the substrate; forming an interlayer dielectric (ILD) layer around the gate structure; removing the gate structure to form a recess; forming a stress layer in the recess, wherein the stress layer comprises metal; and forming a work function layer on the stress layer.
Abstract:
A method for fabricating semiconductor device is disclosed. The method includes the steps of: providing a substrate having a fin-shaped structure thereon and a shallow trench isolation (STI) around the fin-shaped structure, wherein the fin-shaped structure comprises a top portion and a bottom portion; removing part of the STI to expose the top portion of the fin-shaped structure; and performing an oxidation process on the exposed top portion of the fin-shaped structure to divide the top portion into a first top portion and a second top portion while forming an oxide layer around the first top portion.
Abstract:
The present invention provides some methods for forming at least two different nanowire structures with different diameters on one substrate. Since the diameter of the nanowire structure will influence the threshold voltage (Vt) and the drive currents of a nanowire field effect transistor, in this invention, at least two nanowire structures with different diameters can be formed on one substrate. Therefore, in the following steps, these nanowire structures can be applied in different nanowire field effect transistors with different Vt and drive currents. This way, the flexibility of the nanowire field effect transistors can be improved.
Abstract:
The present invention provides some methods for forming at least two different nanowire structures with different diameters on one substrate. Since the diameter of the nanowire structure will influence the threshold voltage (Vt) and the drive currents of a nanowire field effect transistor, in this invention, at least two nanowire structures with different diameters can be formed on one substrate. Therefore, in the following steps, these nanowire structures can be applied in different nanowire field effect transistors with different Vt and drive currents. This way, the flexibility of the nanowire field effect transistors can be improved.