Abstract:
The present disclosure is directed to stationary phase materials for performing size exclusion chromatography. Embodiments of the present disclosure feature hydroxy-terminated polyethylene glycol surface modified silica particle stationary phase materials, which are optionally also methoxy-terminated polyethylene glycol surface modified.
Abstract:
The invention relates to poly-amide bonded hydrophilic interaction chromatography (HILIC) stationary phases and novel HILIC methods for use in the characterization of large biological molecules modified with polar groups, known to those skilled in the art as glycans. The invention particularly provides novel, poly-amide bonded materials designed for efficient separation of large biomolecules, e.g. materials having a large percentage of larger pores (i.e. wide pores). Furthermore, the invention advantageously provides novel HILIC methods that can be used in combination with the stationary phase materials described herein to effectively separate protein and peptide glycoforms by eliminating previously unsolved problems, such as on-column aggregation of protein samples, low sensitivity of chromatographic detection of the glycan moieties, and low resolution of peaks due to restricted pore diffusion and long intra/inter-particle diffusion distances.
Abstract:
The present disclosure relates to a hetero-functional coating applied on a solid support. The coating includes a first functionality for conjugating biomolecules for the analysis of a protein or nucleic acid, and a second functionality for preventing undesired interactions between analytes of interest and the surface of solid support.
Abstract:
The present technology relates to a customizable sample preparation device (e.g., liquid sample preparation device, such as a purification, clean-up, or separation device). In particular, the present technology relates to customizable devices formed from modular segments tailored to address one or more of the following: to optimize different sample and elution volumes, to incorporate various connection mechanisms to liquid handlers, to incorporate various liquid dispensing flow conditions, and to fulfill broad applications through the selection of specific resin for sample preparation. Some embodiments are directed to affinity capture devices, such as for example, Protein A affinity capture devices, utilizing a polymethacrylate-based resin. Other resins as well as other materials for processing a liquid sample are described herein.
Abstract:
In various aspects, the present disclosure pertains to high purity chromatographic materials that comprise a chromatographic surface wherein the chromatographic surface comprises a hydrophobic modifier and an ionizable modifier comprising one or more anion exchange moieties that are positively charged when ionized, as well as devices containing such materials. In other aspects, the present disclosure provides methods for mixed mode, anion exchange reversed phase liquid chromatography comprising: (a) loading a sample comprising a plurality of acidic analytes (e.g., acidic glycans) onto a chromatographic separation device comprising such a high purity chromatographic material and (b) eluting adsorbed acidic analytes from the high purity chromatographic material with a mobile phase comprising water, organic solvent, and an organic acid salt, wherein during the course of elution a pH of the mobile phase, an ionic strength of the mobile phase, and a concentration of the organic solvent are altered over time.
Abstract:
The present disclosure relates to the determination of analytes in a sample using chromatography. The present disclosure provides methods of separating an analyte from a sample. A mobile phase is flowed through a chromatography column. The mobile phase includes about 0.005% (v/v) to about 2.50% (v/v) difluoroacetic acid and less than about 100 ppb of any individual impurity, especially metal impurities. A sample including the analyte is injected into the mobile phase. The analyte is separated from the sample.
Abstract:
Methods for derivatization of biomolecules including glycans or other biopolymers with one or more fluorescent, MS active compounds by reductive amination or rapid tagging in order to produce derivatized glycan having a pKa>7 and between about 200 Å and about 1000 Å of nonpolar surface area are described.
Abstract:
Reagents comprising MS active, fluorescent molecules with an activated functionality for reaction with amines useful in tagging biomolecules such as N-glycans and uses thereof are taught and described.
Abstract:
The present disclosure is directed to stationary phase materials for performing size exclusion chromatography. Embodiments of the present disclosure feature hydroxy-terminated polyethylene glycol surface modified silica particle stationary phase materials, which are optionally also methoxy-terminated polyethylene glycol surface modified.
Abstract:
The present disclosure pertains to sample preparation devices useful for affinity capture and purification that include one or more internal structures that comprise a reservoir, a well, a fluid passageway, sorbent particles, and a filter element that blocks passage of the affinity sorbent particles, which sample preparation devices combine the attributes of both dispersive and flow through designs into a single sample preparation device. The present disclosure also pertains to kits that contain and methods that use such sample preparation devices.