Abstract:
Disclosed are a robot cleaner, a refrigerator, a container transfer system, and a method of transferring and retrieving a container using the robot cleaner. The method of transferring a container include returning a robot cleaner to a position guide device installed at a refrigerator, mounting the robot cleaner on the position guide device, transferring, by the refrigerator, a container built in the refrigerator to mount the container on the robot cleaner, and moving the robot cleaner on which the container is mounted to a target position.
Abstract:
A robotic system comprising a mobile robot including a body housing a rechargeable power source and first electrical contact means disposed on the body and a docking station including second electrical contact means, wherein the mobile robot is dockable on the docking station in order to charge the rechargeable power source. The first electrical contact means includes at least one electrical contact aligned on a first contact axis and the second electrical contact means includes at least one elongate contact, wherein when the robot is docked on the docking station such that electrical contact is established between the first electrical contact means and the electrical contact means. The at least one elongate contact extends in a direction that is transverse to the first contact axis which permits electrical contact to be established between the robot and the docking station while accommodating a degree of lateral and angular misalignment therebetween.
Abstract:
A charging stand (100) for a vacuum cleaner (200) includes: a body (1); and a blade (4) vertically disposed on the body (1), in which the blade (4) extends curvedly along a length direction of the blade (4) and is configured to cut off hairs wound around a brushroll (201) of the vacuum cleaner (200).
Abstract:
A pad changer capable of automatically replacing a pad used to wipe out dust on a floor, a cleaner and a cleaner system having the pad changer are provided. The pad changer to replace a pad mounted to a cleaner includes a replacement unit. The replacement unit includes a separation cartridge to separate the pad from the cleaner and receive the separated pad therein, and a mounting cartridge to receive a pad therein and mount the pad to the cleaner.
Abstract:
A mobile robot system is provided that includes a docking station having at least two pose-defining fiducial markers. The pose-defining fiducial markers have a predetermined spatial relationship with respect to one another and/or to a reference point on the docking station such that a docking path to the base station can be determined from one or more observations of the at least two pose-defining fiducial markers. A mobile robot in the system includes a pose sensor assembly. A controller is located on the chassis and is configured to analyze an output signal from the pose sensor assembly. The controller is configured to determine a docking station pose, to locate the docking station pose on a map of a surface traversed by the mobile robot and to path plan a docking trajectory.
Abstract:
A water dispenser is provided which is, if water leakage should occur, capable of detecting such water leakage at an early stage. The water dispenser includes a dispenser tray disposed between the housing and the floor surface and vertically separating the housing from the floor surface. The dispenser tray includes a dispenser support surface on which the housing is supported, a peripheral wall surrounding the dispenser support surface, and a water leakage indicator disposed in a region surrounded by the peripheral wall, and configured to change between a water leakage alarm state and a non-water-leakage-alarm state depending on whether or not there is water.
Abstract:
A robot cleaner includes a main brush to sweep or scatter dust off a floor, a main brush motor to rotate the main brush, a Revolution Per Minute (RPM) detector to detect an RPM of the main brush motor, and a control unit to determine a type of floor according to the RPM of the main brush motor acquired by the RPM detector and control an operation of the robot cleaner based on the determined type of floor. A carpet mode to clean only a carpet area and a hard floor mode to clean a hard floor area excluding the carpet area are given based on detected information relating to the material of a floor, which enables partial cleaning with respect to a cleaning area selected by a user and adjustment in the number of cleaning operations or the intensity of cleaning according to the material of the floor.
Abstract:
A robot cleaning device includes a debris detecting unit. The robot cleaning device includes a body, a driving unit to enable the body to travel, a drum brush unit provided at the body, to sweep up debris, using a brush and a rotating drum, a debris box to store the debris swept up by the drum brush unit, a debris detecting unit to detect whether debris has been introduced into the debris box through the drum brush unit during a cleaning operation, and a controller to determine whether debris is introduced into the debris box and whether debris has been accumulated in the debris box in a predetermined amount, based on introduction or non-introduction of debris detected by the debris detecting unit.
Abstract:
A mobile robot system is provided that includes a docking station having at least two pose-defining fiducial markers. The pose-defining fiducial markers have a predetermined spatial relationship with respect to one another and/or to a reference point on the docking station such that a docking path to the base station can be determined from one or more observations of the at least two pose-defining fiducial markers. A mobile robot in the system includes a pose sensor assembly. A controller is located on the chassis and is configured to analyze an output signal from the pose sensor assembly. The controller is configured to determine a docking station pose, to locate the docking station pose on a map of a surface traversed by the mobile robot and to path plan a docking trajectory.
Abstract:
The invention relates to a floor treatment robot having an autonomously movable floor treatment appliance and having a housing. The housing of the floor treatment appliance has a standing area on the top side for supporting a person. At least one load cell is provided. The load cell is suitable for measuring the weight of the person. This floor treatment robot solves the technical problem of reducing the space requirement for different domestic appliances.