Abstract:
Devices, systems, and methods for planning radiosurgical treatments for neuromodulating a portion of the renovascular system may be used to plan radiosurgical neuromodulation treatments for conditions or disease associated with elevated central sympathetic drive. The renal nerves may be located and targeted at the level of the ganglion and/or at postganglionic positions, as well as preganglionic positions. Target regions include the renal plexus, celiac ganglion, the superior mesenteric ganglion, the aorticorenal ganglion and the aortic plexus. Planning of radiosurgical treatments will optionally employ a graphical representation of a blood/tissue interface adjacent these targets.
Abstract:
A kidney viability assessment system (KVAS) is disclosed which provides objective and reliable tests to assess the viability of transplant or donor kidneys in vivo and predict their post-transplant outcomes. KVAS includes an optical device augmented by an intelligent algorithm that can evaluate the viability or quality of the donor kidney in a real-time, non-invasive way. In particular, it includes a handheld optical coherence tomography (OCT) imaging device and at least one processor configured for executing a set of instructions corresponding to an automatic image processing algorithm for quantification of kidney microstructures and functions. Handheld OCT can survey the entire surface of kidney, and the image processing algorithm automatically segments and quantifies the diameter and/or density of the kidney microstructures, blood flows, etc., and quantitative values are displayed in real-time on a display of the KVAS.
Abstract:
The present invention aims at providing a novel indocyanine compound solving problems of conventionally used indocyanine green, such as solubility in water or physiological saline, a synthesis method and a purification method thereof, and a diagnostic composition including the novel indocyanine compound. Further, provided are a method for evaluating biokinetics of the novel indocyanine compound and a device for measuring biokinetics, and a method and a device for visualizing circulation of fluid such as blood in a living body, which utilize the diagnostic composition. Also, found are a novel indocyanine compound in which a hydrophobic moiety in a near-infrared fluorescent indocyanine molecule is included in a cavity of a cyclic sugar chain cyclodextrin to cover the hydrophobic moiety in the indocyanine molecule with the glucose, and a synthesis method and a purification method thereof. Furthermore, found are a method for fluorescence-imaging an organ other than liver by intravenous administration, a method for evaluating biokinetics of the novel indocyanine compound, a device for measuring biokinetics, and a method and a device for visualizing circulation of fluid such as blood in a living body, utilizing the diagnostic composition including the novel indocyanine compound.
Abstract:
System and method for locating and identifying nerves innervating the wall of arteries such as the renal artery are disclosed. The present invention identifies areas on vessel walls that are innervated with nerves; provides indication on whether a dose of energy is delivered accurately to a targeted nerve; and provides immediate post-procedural assessment of the effect of the energy delivered to the nerve. The method includes at least the steps to evaluate a change in physiological parameters after a dose of energy is delivered to an arterial wall; and to determine the type of nerve that the energy was directed to (none, sympathetic or parasympathetic) based on the results of the evaluation. The system includes at least a device for delivering a dose of energy to the wall of an artery; sensors for detecting physiological signals from a subject; and indicators to display the results obtained using the said method.
Abstract:
Methods and apparatus are provided for monopolar neuromodulation, e.g., via a pulsed electric field. Such monopolar neuromodulation may effectuate irreversible electroporation or electrofusion, necrosis and/or inducement of apoptosis, alteration of gene expression, action potential attenuation or blockade, changes in cytokine up-regulation and other conditions in target neural fibers. In some embodiments, monopolar neuromodulation is applied to neural fibers that contribute to renal function. In some embodiments, such monopolar neuromodulation is performed bilaterally.
Abstract:
A system is described having a heating device with a focused antenna array, a chair, a cabinet, at least one temperature monitoring device, a cooling system, and a controller. The system may be used to heat and monitor internal tissue and/or fluid in an individual in a non-invasive way.
Abstract:
Systems and methods are directed to generating and analyzing light. Spatial light response around a human fingertip in response to electrical stimulation is associated with the status of various body organs. A system that provides a particularized response indication based on spatial light response includes a camera, an electrical signal generator, a light source, a circuit, and a computer. The signal generator stimulates emission of light from the finger when the finger is at a position relative to the camera. The light source illuminates the finger at the position. The circuit activates the light source and the camera to obtain a first image of the finger at the position, activates the signal generator and the camera to obtain a second image of the emission of light from the finger at the position, determines a direction from the first image, determines a centroid from the second image, and determines a description of the second image in accordance with the direction and the centroid. The computer receives indicia of the description and provides the particularized response indication in accordance with the description, wherein the particularized response indication describes a status of various body organs.
Abstract:
A diagnostic method and apparatus for detecting at least one change in a urinary parameter indicative of a body malfunction, the method comprising at least semi-continuously monitoring in real time at least one of a sodium level, an oxygen level, a potassium level, and combinations thereof in the urine of a catheterized patient; whereby at least one parameter is monitored so as to detect one or more changes in the at least one parameter to reflect at least one of a fluid state, an electrolyte balance, a kidney state, a kidney perfusion and an organ perfusion in the patient, indicative of the body malfunction in the patient, in which the monitoring is preferably performed through electrodes that are arranged perpendicularly to the flow of urine through a patient's catheter system.
Abstract:
Embodiment methods of treating a human or animal patient using a remotely controlled robotic catheter device inserting a handle of a catheter into a handle controller, inserting the catheter tubular portion into a resealable delivery channel forming a sterile barrier to a sled base, engaging a tip of the catheter with a sterile introducer disposed at an end of the sled base and engaged with the patient's body, positioning the catheter into the patient's body by remotely sending commands to the tele-robotic device to cause the sled member to advance toward the patient's body, and performing a diagnostic or therapeutic procedure on the patient using the catheter. Diagnostic or therapeutic procedures may include a mapping procedure, an ablation procedure, an angioplasty procedure, a drug delivery procedure; an electrophysiology procedure, a radiological procedure, and a medical device implantation or positioning procedure.
Abstract:
System and method for locating and identifying nerves innervating the wall of arteries such as the renal artery are disclosed. The present invention identifies areas on vessel walls that are innervated with nerves; provides indication on whether a dose of energy is delivered accurately to a targeted nerve; and provides immediate post-procedural assessment of the effect of the energy delivered to the nerve. The method includes at least the steps to evaluate a change in physiological parameters after a dose of energy is delivered to an arterial wall; and to determine the type of nerve that the energy was directed to (none, sympathetic or parasympathetic) based on the results of the evaluation. The system includes at least a device for delivering a dose of energy to the wall of an artery; sensors for detecting physiological signals from a subject; and indicators to display the results obtained using the said method.