Abstract:
Titania particles including charged particles that are used in an electrophoretic device, wherein surfaces of the particles are finished using a surface finishing agent containing a composition having a single reactive group so that the composition bonds to the particles at the reactive group of the composition.
Abstract:
An object of the present invention is to provide a microcapsule for an electrophoretic display device which can suppress reduction in later contrast even when the electrophoretic display device is allowed to stand under the high temperature and high humidity condition, favorably, under the high temperature and high humidity condition for a long time (e.g. under 60° C., 90% RH for 24 hours). As a means of achieving this object, a microcapsule according to the present invention for an electrophoretic display device comprises an electrophoretic fine particle and a solvent both of which are encapsulated in a shell, and is characterized in that an amount of an alkaline metal ion in the whole microcapsule is 150 ppm or smaller.
Abstract:
Methods for preparing microparticles having reduced residual solvent levels. Microparticles are contacted with a non-aqueous washing system to reduce the level of residual solvent in the microparticles. Preferred non-aqueous washing systems include 100% ethanol and a blend of ethanol and heptane. A solvent blend of a hardening solvent and a washing solvent can be used to harden and wash microparticles in a single step, thereby eliminating the need for a post-hardening wash step.
Abstract:
A method of making a multichromal sphere includes the steps of preparing a composition of at least (1) a matrix material and (2) at least two sets of particles, each of the sets of particles having a color different from at least one of another of the sets of particles and a segregation (e.g., an electrical or magnetic) property different from at least one of another of the sets of particles, encapsulating the composition within a shell to form an encapsulated sphere, immobilizing the encapsulated sphere in a manner to restrict at least rotation of the encapsulated sphere, subjecting the immobilized encapsulated sphere to an external field associated with the segregation property different among the sets of particles, under conditions in which the sets of particles are able to migrate within the matrix material, thereby producing color segregation in the immobilized encapsulated sphere, and solidifying the matrix material while substantially maintaining the color segregation. In the multichromal spheres, each of the sets of particles is segregated within a separate segment of the solidified matrix material of the core on the basis of the different segregation property.
Abstract:
A particulate composition comprising particles which consist of a shell wall surrounding a hydrophilic core, wherein the shell wall is formed from a polymeric coacervate and wherein the particles comprise a polymeric amphipathic stabiliser. Also claimed is a process of producing a particulate composition comprising particles which consist of a shell wall surrounding a hydrophilic core, comprising the steps of a) forming an aqueous liquid that contains a wall building material that is capable of forming the shell wall by coacervation, b) dispersing the aqueous liquid into a water immiscible liquid, which comprises a stabilising substance to form a dispersion that comprises aqueous droplets dispersed in a continuous phase of water immiscible liquid, c) subjecting the dispersion to coacervation conditions, such that the wall building material coacervates at the surface of the aqueous doplets, characterised in that the stabilising substance comprises a polymeric amphipathic stabiliser. Preferably the particulate composition obtainable by the process contains an active ingredient and is used in a detergent composition. The active ingredient preferably comprises any of detergency building ingredients, a buffering system and/or a sequesterant and/or detergent builder. Citric acid is a particularly preferred active ingredient.
Abstract:
The present invention generally relates to nanocapsules and methods of preparing these nanocapsules. The present invention includes a method of forming a surfactant micelle and dispersing the surfactant micelle into an aqueous composition having a hydrophilic polymer to form a stabilized dispersion of surfactant micelles. The method further includes mechanically forming droplets of the stabilized dispersion of surfactant micelles, precipitating the hydrophilic polymer to form precipitated nanocapsules, incubating the nanocapsules to reduce a diameter of the nanocapsules, and filtering or centrifuging the nanocapsules.
Abstract:
A microcapsule (or microencapsulated product) having a uniform and smooth coating film and also an excellent performance of gradually liberating the content material is produced at a good particle size distribution while suppressing the occurrence of isolated or aggregated film material, aggregated microcapsules and isolated core material. The production process includes: a first coating step of mixing a water-soluble cationic amino resin and an anionic surfactant in the presence of a hydrophobic core material dispersed in an aqueous medium to coat the dispersed core material with a coacervate of the cationic amino resin and the anionic surfactant; and a second coating step of adding an amino resin prepolymer into an aqueous dispersion liquid containing the coated dispersed core material and polycondensating the amino resin prepolymer to further coat the coated dispersed core material with a polycondensate of the amino resin prepolymer.
Abstract:
A allium flavored flour as well as to a method of making a flavored flour dough product. The allium flavored flour comprises flour and allium oil capsules formed by protein coacervation. The allium oil capsules are heat-stable and fracturable, and are added in an amount sufficient for flavoring when the flour is formed into a dough. Because the allium oil capsules are heat-stable, the allium oil does not affect the rheology of the dough during dough processing, baking or cooking and because the capsules are fracturable on chewing, the dough product provides a uniform and sustained allium flavor when eaten. The flavored flour or dough product further includes free allium material in an amount sufficient to reduce the mix time required to develop the dough and may be combined with the oil capsules in a customized blend to provide the desired level of flavor and affect on dough rheology.
Abstract:
Ferritin analogs comprising an apoferritin protein shell and a core substantially devoid of ferrihydrite, e.g. of inorganic composition such as aluminum hydroxide or organic composition such as acetaminophen. The protein shell can be removed from ferritin analog to produce spherules having a substantially monomodal nominal diameter between about 45 and 90 Angstroms.
Abstract:
Ferritin analogs comprising an apoferritin protein shell and a core substantially devoid of ferrihydrite, e.g. of inorganic composition such as aluminum hydroxide or organic composition such as acetaminophen. The protein shell can be removed from ferritin analog to produce spherules having a substantially monomodal nominal diameter between about 45 and 100 Angstroms.