Abstract:
A method of maintaining a cooling system includes the steps of introducing an ion exchange resin into a cooling path, performing ion cleaning of a coolant in the cooling path with the ion exchange resin, and adding an additive to the cooling path after removing the ion exchange resin from the cooling path.
Abstract:
Provided is a porous molding which is capable of removing ions in water to be treated, in particular, phosphorus ions at a very high liquid-permeation rate of at least SV 120 hr−1, and which has a large adsorption capacity. The porous molding according to the present invention comprises an organic polymer resin and an inorganic ion adsorbent, and is characterized in that a total volume of pores having a pore diameter of 1-80 nm as measured by a nitrogen adsorption method is 0.05-0.7 cm3/g per unit mass of the inorganic ion adsorbent.
Abstract:
Treating a non-wine alcoholic beverage including: exposing the non-wine alcoholic beverage to an ion exchange matrix. The ion exchange matrix includes a mixture of cation exchange media and anion exchange media that includes: (1) cation exchange media that are in hydrogen form, (2) cation exchange media that are in mineral form comprising potassium mineral form, (3) anion exchange media that are in hydroxide form, and (4) anion exchange media that are in chloride mineral form. The exposing results in: binding ions of the mixture to one or more cationic or anionic constituents present in the pretreated beverage, reducing concentrations of the one or more cationic or anionic constituents in the beverage and maintaining a conductivity value of the treated beverage equal to or greater than the pretreated beverage's conductivity value. An apparatus for treating a non-wine alcoholic beverage and a treated non-wine alcoholic beverage prepared by a process are also disclosed.
Abstract:
An ion exchange tank is provided. The ion exchange tank includes a processing chamber and an additive chamber separated by a weir system, the weir system having a flow channel fluidly connecting the processing chamber to the additive chamber, wherein the flow is divided from the additive chamber by a first partition and divided from the processing chamber by a second partition, wherein the additive chamber comprises a solids-absorbing material disposed therein.
Abstract:
A production system for manufacturing composite porous solid articles is provided wherein the color of such articles is monitored to confirm that the articles, which are produced by heating and compressing mixtures of poly(vinylidene fluoride) binder powder (such as Kyblock® resin from Arkema) and activated carbon powder, are fully cured. Adjustments to the processing conditions are made when a region of the article appears blue (indicative of incomplete curing).
Abstract:
A process for removing suspended particles and at least one ionic species from a feed water stream to produce a product water stream, the process includes the steps of forming agglomerates of the suspended particles in the feed water stream; passing the feed water stream containing agglomerated particles through a bed of particulate sorbent material so as to sorb the ionic species from the feed water onto the sorbent to provide a loaded sorbent and filter the agglomerated particles from the feed water using the bed of particulate sorbent material as a filtration medium to load the bed with the agglomerated particles, and thereby produce the product water stream; removing the filtered particles and the ionic species from the filtration medium; and re-using the regenerated sorbent in step b).
Abstract:
An ion-exchange membrane including a porous unstretched polyethylene sheet in which fine pores are piercing, the pores being filled with an ion-exchange resin.The ion-exchange membrane exhibits excellent concentration property.
Abstract:
The present invention provides a capsule-type compound consisting of: a capsule-type divalent cation consisting of a capsule framework represented by the following formula (1) and a sulfate ion (SO42−) encapsulated in the capsule framework; and a sulfate ion (SO42−) as a counter ion to the capsule-type divalent cation. In the formula (1), R1, R2, R3, R4, R5, R6, R7, R8, R9, R10, R11, R12, and R13 each independently represent a hydrogen atom or a methyl group; and M1 and M2 each independently represent Cu2+, Fe2+, Ni2+, Co2+, or Zn2+.
Abstract:
The present invention relates to a method for granulation of an absorbent and adsorbent granules prepared by the same. The method comprises the steps of blending sodium metasilicate, metakaoline and an inorganic ion exchange material in water to form a slurry; decanting the resulted slurry onto a nylon cloth of 300 to 400 meshes and natural drying at ambient temperature to solidification; then breaking the solidified final product and sieving it by a screen having a mesh size of from 0.2 to 2.5 mm to provide the absorbent granules having excellent absorbability.