Abstract:
The Assembly comprises a centrally-bored nozzle, a centrally-bored nozzle body, a centrally-bored jet orifice element, and an orifice element-supporting cylinder, the four being in substantially collinear alignment along a longitudinal axis. The cylinder is disposed in the central bore of the body, and it too has a fluid-accommodating passage formed centrally therethrough, as well as a recess in one end in which to nest the orifice element. The cylinder has a straight shank portion which projects into a void in the nozzle body subsisting between the element and the nozzle. Adjustment screws, in penetration of the nozzle body, are arrayed about the shank portion for manipulation to adjust the attitude of the shank portion relative to the longitudinal axis and, thereby, correctively align the element with the nozzle.
Abstract:
A process and apparatus for generating particulate containing fluid jets wherein at least one discontinuity generator is provided to create fluid instabilities, enhancing entrainment and acceleration of particulates in the fluid jet stream and providing uniform distribution of accelerated particles over a large surface area.
Abstract:
A nozzle for the gunning of monolithic refractories, being provided with a liquid adding mechanism (6), characterized in that an air or air-liquid mix feeding portion (4) having an inlet (4a) and a tube protecting pipe (3) are arranged in order following the liquid adding mechanism (6), a flange portion (1a) of a flexible inner layer tube (1) is anchored on the liquid adding mechanism side of said feeding portion (4) while another flange portion (2a) of a flexible outer layer tube (2) is anchored on the side of an outlet (10) of the feeding portion (4) thereby to insert the inner layer tube (1) into the outer layer tube (2), and an annular dead space (11) communicating with the inlet (4a) is formed between the inner layer flange portion (1a) and said outer flange portion (2a).
Abstract:
An orifice for a high-pressure waterjet cutter includes a first surface defining an inlet plane, a second surface defining an outlet plane, and an inner bore aligned along a flow axis and extending from the first surface to the second surface. The orifice also includes a first layer of polycrystalline diamond extending from the first surface to a plane between the inlet plane and the outlet plane, and a second, separate layer of polycrystalline diamond extending from the plane to the second surface. The first layer and the second layer are coupled to one another to define a single component. The second layer has material properties different than the first layer.
Abstract:
A hose attachment particulate spreader device is provided that includes a housing having a particulate egress aperture. A first funnel channel is provided for conveying dry flowable particulate. A selector controls a first gate in communication with the first funnel channel. The first gate meters dry flowable particulate within the first funnel channel. A water inlet is also provided for engaging a water supply hose. A water trigger is included for simultaneously opening a second gate in communication with the first gate and the egress aperture, as well as applying a water spray to exhaust a content from the funnel hose out the egress aperture. A process for field spreading is provided that includes attaching a bottle to such a device, the bottle containing a content of a dry flowable particulate or a slurry. The device is coupled to a water supply hose and by exhausting a water spray from the water supply hose through the device to exhaust a portion of the content while the content remaining in the bottle does not contact the water spray and remains in an unchanged form.
Abstract:
A mixing device for outputting wet insulation is provided. The mixing device includes a nozzle and a plurality of control apertures that control penetration of a wetting material, such as foam with a binder, into insulation particles that are being forcibly moved through the nozzle. The control apertures can be used to provide a spray output and/or control the insulation density associated with the wet insulation output by the nozzle. The control apertures can be part of a primary conduit that can be adjustable or removable relative to a receiver space of the nozzle. Depending on the relative location of the control apertures in the nozzle receiver space, a desired insulation density can be achieved. Different primary conduits can also be provided having one or more of a different number of control apertures, sizes of the control apertures and positions thereof.