Abstract:
A configuration is provided for a deposition device using the catalytic CVD method which reduces problems associated with extension of the catalyst and is superior in terms of running costs and productivity. The configuration provides a chamber 1 able to maintain reduced interior pressure; a source gas introducing route 32, 33a for introducing source gas into the chamber; a catalyst 4 of tantalum wire having a boride layer on the surface and provided inside the chamber 1 so as to allow the source gas introduced via the source gas introducing route to come into contact with the surface of the catalyst; a gas introducing route 36, 33b for introducing boron-containing gas to the chamber 1 for the reformation of the boride layer on the surface of the catalyst 4; and a power supply unit 5 for applying energy to the catalyst 4 to maintain the catalyst at a predetermined temperature. In this configuration, the introduction of the source gas is stopped, the catalyst 4 is heated while introducing diborane gas from the gas introducing route for reformation of the surface layer, and more boride is formed on the surface of the boride layer of the catalyst 4.
Abstract:
An adhesive dispenser includes a moving assembly, a detecting assembly, and an adhesive dispensing assembly. The detecting assembly includes two pairs of light elements, which transmits light beams from a first element of each pair to the second element of each pair. The adhesive dispensing assembly includes a control unit, a drive unit, and an adhesive nozzle, the control unit is for driving the adhesive nozzle to move. The control unit drives the adhesive nozzle to block the light beams of the two pairs of light elements and records the coordinate position of the adhesive nozzle when blocking both the light beams, and calculates a variety of the recorded coordinate position and a reference coordinate position, then controls the drive unit to regulate the position of the adhesive nozzle according to the variety. An adhesive nozzle regulating method is also described.
Abstract:
The present invention discloses systems and methods for printing functional blocks from a plurality of printheads to a target substrate. In exemplary embodiments, the printing system comprises a main printhead for the majority of printing process, and a secondary printhead for supplemental printing. The system further comprises a controller, utilizing a positioning intelligence system to distribute the printing of the functional blocks between the main printhead and the secondary printhead, to minimize the motions of the printheads while maximize the printing speed.
Abstract:
An apparatus for forming selectively coated areas on a substrate comprises an extrudate remover configured to selectively remove coating from a selected portion of the substrate. A chuck is configured to secure the substrate. A coating die is arranged proximal the substrate and is in fluid communication with a source of fluid extrudate. During relative motion between the substrate and the coating die, fluid extrudate is deposited onto the substrate. A controller is configured to selectively control the relative motion between the substrate and coating remover, and to control operation of the extrudate remover. The invention also provides a method of forming selectively coated areas on a substrate comprising the steps of inducing relative movement between a coating dispenser and the substrate, applying fluid material from the coating dispenser onto the substrate during the relative movement, and selectively removing a portion of the applied fluid from the substrate.
Abstract:
A film forming apparatus includes a substrate holding unit holding substrates at intervals; a reaction chamber accommodating the substrate holding unit; a raw material gas supply pipe supplying a raw material gas of a thin film to the substrate; a support unit supporting the reaction chamber; a heating unit being disposed outside the reaction chamber and heating the substrates; a protection pipe including one end portion fixed to the support unit, being extended along an arrangement direction of the substrates between the substrate holding unit and the reaction chamber, and including a temperature measuring unit inserted therein; and a protrusion portion being provided on at least one of an outer surface of the protection pipe and an inner surface of the reaction chamber, and providing a gap between the outer surface of the protection pipe and the inner surface of the reaction chamber.
Abstract:
A method for depositing a coating of a first metal onto a workpiece 12 which exposes a second metal by a) providing a bath liquid 16 containing components containing ions of the first metal to be deposited, at least one complexing agent for the second metal and at least one acid, b) depositing the coating of first metal from the bath liquid 16 onto the workpiece 12, c) feeding the bath liquid 16 into a tank 18, d) cooling the bath liquid 16 in the settling tank 18 for generating a precipitate and filtrate, the precipitate comprised of the second metal and the at least one complexing agent, f) returning the filtrate to the bath liquid 16 and g) replenishing bath components to the bath liquid 16. In separating precipitate from the filtrate a pressure difference is generated by the filter.
Abstract:
A method for detecting particles in a gas by saturating the gas with vapor and causing the gas to flow through a chamber with walls that are at a temperature different than the temperature of the entering gas creating a gas turbulence within the chamber resulting in the gas becoming super-saturated with vapor and causing said super-saturated vapor to condense on said particles and form droplets, which are then detected and counted by an optical light-scattering detector.
Abstract:
Marking devices for dispensing a marking substance on the ground and marking methods are provided. The marking devices and marking methods use one or more detection mechanisms to detect one or more characteristics of the marking substance. In some embodiments, the detection mechanism may be, but is not limited to, an optical sensor, an olfactory sensor, a weight sensor, a switch device, and any combination thereof. The one or more detection mechanisms may provide, for example, the capability to: (1) determine the type of marking substance that is installed in the marking device; (2) determine in advance of or during a marking operation the amount of marking substance within the marking dispenser; and (3) determine when the marking dispenser is becoming empty.
Abstract:
An object is to improve use efficiency of an evaporation material, to reduce manufacturing cost of a light-emitting device, and to reduce manufacturing time needed for a light-emitting device including a layer containing an organic compound. The pressure of a film formation chamber is reduced, a plate is rapidly heated by heat conduction or heat radiation by using a heat source, a material layer on a plate is vaporized in a short time to be evaporated to a substrate on which the material layer is to be formed (formation substrate), and then the material layer is formed on the formation substrate. The area of the plate that is heated rapidly is set to have the same size as the formation substrate and film formation on the formation substrate is completed by one application of heat.
Abstract:
Methods and apparatus for filling gaps on partially manufactured semiconductor substrates with dielectric material are provided. In certain embodiments, the methods include introducing a first process gas into the processing chamber and accumulating a second process gas in an accumulator maintained at a pressure level substantially highest than that of the processing chamber pressure level. The second process gas is then rapidly introduced from the accumulator into the processing chamber. An excess amount of the second process gas may be provided in the processing chamber during the introduction of the second process gas. Flowable silicon-containing films forms on a surface of the substrate to at least partially fill the gaps.