Abstract:
The invention relates to a system and a method for washing, cleaning, disinfecting and sanitizing laundry using electrolyte solution containing mixed oxidants generated in-situ using electrochemical reaction. More particularly the present invention relates to a system and a method for washing, cleaning, disinfecting and sanitizing laundry at a pH between 6.5 to 10.5 and at a temperature below 50° C. using in-situ mixed oxidants generated by passing electrolyte solution through electrolytic cell having boron-doped diamond electrode.
Abstract:
The object of the invention is to provide a method for cleaning circulation water, which reduces the cost of operation and maintenance as much as possible, without a cumbersome cleaning operation such as by detaching electrode plates from an electrolysis cleaning tank and removing scale from inside the tank, and to provide a device used in this method. Accordingly, the present invention provides a method for cleaning circulation water, comprising the steps of flowing circulation water to be cleaned between electrode plates placed in a face-to-face manner between one another; and applying DC voltage between the electrode plates, allowing one or more metal ions contained in the circulation water to be precipitated onto the negative electrode plates by electrolysis, to clean the circulation water, wherein the electrode plates used are made of titanium plates, and wherein a desired amount of current flows, while an anodized oxide coating formed on the surface of the positive electrode plates is compulsively subject to dielectric breakdown by increasing the voltage applied to the anodized oxide coating. FIG. 1 is a representative drawing.
Abstract:
The invention relates to a method for cleaning water or an aqueous flow electrochemically by flotating impurities contained in water for collecting the impurities from a surface of the water. The method includes conveying the water flow to be cleaned through at least one particle bed which behaves bipolarically under electric voltage, which bed is formed of an anode and a cathode and metal particles arranged between the anode and the cathode; leading a changing direct current to the particle bed to maintain electrochemical reactions on anodic regions and cathodic regions of the particles; and dissolving metal of the particles electrochemically to water to split water to micro bubbled hydrogen gas H2 for the flotation and to hydroxide ions OH— for increasing pH of water. The invention relates also to an apparatus for cleaning water or an aqueous flow electrochemically.
Abstract:
Provided is an electro-chemical water treatment apparatus and method for removing total nitrogen ingredients of ammonia nitrogen, nitrous acid nitrogen, nitrate nitrogen etc., organic materials of BOD and COD induction ingredients, and cyanogen included in wastewater and dirty water. The apparatus includes: a wastewater collection reservoir that contains wastewater; a wastewater storage retention reservoir that controls a hydrogen ion concentration (pH), an electrical conductivity and an amount of flow of wastewater; an electrolyte tank which makes the electrical conductivity of the wastewater as an electrical conductivity at which an electrolysis can be achieved; a pH conditioner tank that supplies a pH conditioner for the wastewater; an electrolyzer including an anode plate and a cathode plate, and a number of electrodes which are arranged as an electrification body between the anode plate and the cathode plate; and a controller which grasps state of wastewater and which is connected to the anode plate and the cathode plate to thereby control the electrolysis.
Abstract:
Ozone is a powerful and versatile oxidant that is good for many applications including sterilization of drinking water, rejuvenation of waste waters, and chemical syntheses. Most of the man-made ozone for the said uses comes from corona discharge of oxygen gas. From the aspects of simplicity, efficiency, voltage level and space area, generation of ozone by water electrolysis has all advantages over the discharge means. It requires an catalyst deposited on the anode of electrolyzer for generating ozone gas directly in water, and the anode material should be affordable, long-lived and reliable. For the said device to become commercially viable, the scale buildup, particularly calcium carbonate, on the cathodes must also be resolved. Tests have shown that the provision of a low vacuum over the electrodes of electrolyzer can assist the device to deliver a consistent ozone throughput for a long period of time. An economical, dependable and self-sustained O3-water producing system is devised to fulfill individuals, households, communities, and industries on their water needs.
Abstract:
A method of sterilizing water that includes: immersing at least one electrode unit having a negative electrode within a container and a positive electrode within the container, the positive electrode separated from and facing the negative electrode, wherein the negative electrode has a plurality of negative electrode projections thereon, and the positive electrode has a plurality of positive electrode projections thereon, each positive electrode projection arranged to face and be aligned with each negative electrode projection one by one; and, supplying direct current by at least one power supply to the electrode unit immersed under the water.
Abstract:
A wastewater treatment system and method comprises a treatment chamber having a filtration membrane spanning an effluent outlet of the chamber and a pair of electrodes in the treatment chamber so as to be in communication with the wastewater. An electrical potential difference is applied between the electrodes such that one of the electrodes functions as an anode and one of the electrodes functions as a cathode. A flow of fluid is induced out of the treatment chamber through the filtration membrane to the effluent outlet. Accordingly the treatment chamber is arranged to biologically treat the wastewater, electrochemically treat the wastewater and mechanically filter the wastewater through the filtration membrane commonly therein.
Abstract:
Methods and systems for reducing a redox active contaminant in a waste stream in a waste treatment system involve performing a unit process of the waste treatment system by contacting redox active contaminant in the waste stream with oxyhydrogen-rich gas generated on-site by an oxyhydrogen gas generator that implements water dissociation technology. The oxyhydrogen gas generator involves applying a pulsed electrical signal to a series of closely spaced electrodes that are submerged in the waste stream to produce oxyhydrogen-rich gas from a water component of the waste stream. Operation of the oxyhydrogen gas generator in the waste stream may accomplish one or more unit processes for waste treatment, such as oxidation, stripping, floatation, disinfection, conditioning, stabilization, thickening, and dewatering, among others.
Abstract:
A portable apparatus for treating polluted water by electrocoagulation. The apparatus comprising at least two electrodes (1,2). The apparatus also includes a housing (4), electrically isolated from the at least two electrodes (1,2), to which the at least two electrodes (1,2) are fixed spaced apart from one another. When the at least two second electrodes (1,2) are at least partly submerged in the polluted water and provided with an electrical potential, one of the at least two electrodes (2) is sacrificial so as to provide ions to the polluted water.