Abstract:
A method for manufacturing a primary preform for optical fibers using an internal vapor deposition process, including the steps of: i) providing a hollow glass substrate tube having a supply side and a discharge side, ii) surrounding at least part of the hollow glass substrate tube by a furnace, iii) supplying doped or undoped glass-forming gases to the interior of the hollow glass substrate tube via the supply side thereof, iv) creating a reaction zone in which conditions such that deposition of glass will take place on the interior of the hollow glass tube are created, and v) moving the reaction zone back and forth along the length of the hollow glass substrate tube between a reversal point located near the supply side and a reversal point located near the discharge side of the hollow glass substrate tube, wherein, during at least part of step v), the gas flow comprises a first concentration of fluorine-containing compound when the reaction zone is moving in the direction of the discharge side.
Abstract:
Methods for producing an optical fiber by elongating a silica glass blank or a coaxial group of silica glass components, on the basis of which a fiber is obtained that comprises a core zone, an inner jacket zone enclosing the core zone and a ring zone surrounding the inner jacket zone, are known. In order to provide, proceeding from this, a method, a tubular semi-finished product and a group of coaxial components for the cost-effective production of an optical fiber, which is characterized by a high quality of the boundary between the core and jacket and by low bending sensitivity, according to the invention, the silica glass of the ring zone is provided in the form of a ring zone tube made of silica glass having a mean fluorine content of at least 6000 weight ppm and the tube has an inner tube surface and an outer tube surface, wherein via the wall of the ring zone tube, a radial fluorine concentration profile is adjusted which has an inner fluorine depletion layer with a layer thickness of at least 1 μm and no more than 10 μm, in which the fluorine content decreases toward the inner tube surface and is no more than 3000 weight ppm in a region close to the surface which has a thickness of 1 μm.
Abstract:
A manufacturing method for a porous silica body including: a step of arranging a plurality of burners around an optical fiber core rod; and a deposition step of depositing a plurality of soot layers on an outer peripheral surface of the optical fiber core rod by the burners, wherein the deposition step comprises forming each of the plurality of soot layers by one of the burners, and depositing each soot layer to satisfy 0.2≦x≦0.5 and 0.1≦y≦4.0x2−3.8x+1.3 where x (g/cm3) is the average bulk density and y (mm) is the deposition thickness, and so that the maximum value of the bulk density of the soot layers becomes 0.6 g/cm3 or less.
Abstract:
A method of manufacturing an optical fiber includes providing a preform in a furnace, and drawing a plurality of optical fibers from the preform at a plurality of different draw tensions. A bandwidth characteristic of each of the optical fiber is drawn at the different draw tensions is measured. A draw tension setpoint is selected based on the measured bandwidth characteristic of each optical fiber and the draw tension is adjusted to the selected draw tension setpoint. The method further includes drawing from the preform a tuned optical fiber at the selected draw tension setpoint which provides peak bandwidth.
Abstract:
The specification describes an improved optical fiber produced by a hybrid VAD/MCVD process. The core of the fiber is produced using VAD and the inner cladding layer has a depressed index and is produced using MCVD. In preferred embodiments, the optical power envelope is essentially entirely contained in VAD produced core material and the MCVD produced depressed index cladding material. Optical loss is minimized by confining most of the optical power to the VAD core where OH presence is low, as well as by maximizing the optical power in the un-doped silica region. The MCVD substrate tube material is essentially devoid of optical power.
Abstract:
A method is provided for forming an optical fiber amplifier. The method comprises providing a composite preform having a gain material core that includes one or more acoustic velocity varying dopants to provide a longitudinally varying acoustic velocity profile along the gain material core to suppress Stimulated Brillouin Scattering (SBS) effects by raising the SBS threshold and drawing the composite preform to form the optical fiber amplifier.
Abstract:
The present invention provides a method of making rare earth (RE) doped optical fiber using BaO as co-dopant instead of Al or P commonly used for incorporation of the RE in silica glass by MCVD and solution doping technique. The method comprises deposition of particulate layer of GeO2 doped SiO2 with or without small P2O5 for formation of the core and solution doping by soaking the porous soot layer into an aqueous solution of RE and Ba containing salt. This is followed by dehydration and sintering of the soaked deposit, collapsing at a high temperature to produce the preform and drawing of fibers of appropriate dimension. The use of Ba-oxide enables to eliminate unwanted core-clad interface defect which is common in case of Al doped fibers. The fibers also show good RE uniformity, relatively low optical loss in the 0.6-1.6 μm wavelength region and good optical properties suitable for their application in amplifiers, fiber lasers and sensor devices.
Abstract:
A method for manufacturing a preform for optical fibers by a vapor deposition process wherein an intermediate step is carried out between one deposition phase and the next deposition phase(s), wherein the intermediate step includes supplying an etching gas to the supply side of the hollow substrate tube.
Abstract:
A microstructured optical fiber for transmitting optical signals comprised of light, the optical fiber comprising: a core region disposed about a longitudinal centerline and having a refractive index profile with a first refractive index, and a cladding region surrounding the core region, the cladding region comprising an annular void-containing region comprised of non-periodically disposed voids; wherein maximum void diameter in nm is given by Dmax and the maximum void length in cm is not greater than 2.5×105×(dmax)−1.7.
Abstract:
A method of fabricating a glass body that includes a multiplicity of constituents, at least one of which is a dopant (e.g., a rare-earth element) having a low vapor pressure (LVP) precursor comprises the steps of: (a) generating an aerosol from the LVP precursor; (b) separately generating vapors of the other constituents; (c) convecting the aerosol and vapors to deposition system including a substrate; and (d) forming at least one doped layer on a surface of the substrate. In one embodiment, the method also includes filtering the aerosol so as to remove aerosol particles outside of a particular range of sizes. Also described is a unique aerosol generator that is particularly useful in generating aerosols of rare-earth dopants. Particular embodiments directed to the fabrication of Yb-doped optical fibers are described.