Abstract:
Gasoline fuel formulation containing (i) tricyclene, which is suitably biologically derived, and (ii) a gasoline base fuel. The formulation may contain one or more additional biofuel components or oxygenates: it may for example include ethanol, or ethanol together with one or more additional biofuels. The invention also provides a method for preparing the formulation, its use in a spark ignition engine, and the use of tricyclene in a gasoline fuel formulation for various purposes, including to enhance lubricity.
Abstract:
A synergistic combination antioxidant mixture that provides excellent characteristics for biodiesel fuel compositions, when incorporated therein.
Abstract:
Compositions including an iron containing fuel additive and a solid carrier are disclosed. Methods of preparing tablet forms of the compositions are also disclosed. The iron containing fuel additive may be ferrocene and/or substituted ferrocene derivatives. The compositions are useful for handling and rapidly solvating the iron containing fuel additive in a fuel such as gasoline.
Abstract:
A quaternary ammonium salt detergent made from the reaction product of the reaction of: (a) a hydrocarbyl substituted acylating agent and a compound having an oxygen or nitrogen atom capable of condensing with said acylating agent and further having a tertiary amino group; and (b) a quaternizing agent suitable for converting the tertiary amino group to a quaternary nitrogen and the use of such quaternary ammonium salt detergents in a fuel composition to reduce intake valve deposits.
Abstract:
An aviation gasoline (Avgas) formulation free from tetraethyl lead (TEL) for piston driven aircraft is described, the formulation comprising, in volume percent, between 0 and 65.2 base alkylate, between 0 and 50 super-alkylate, between 0 and 25 toluene, between 2 and 10 of a toluidine isomer blend, between 0 and 5 ethyl alcohol, between 0 and 25 C5 cut and between 0 and 10 triptane. The formulations are prepared by admixing the components, with the order of mixing being from the denser to the less dense, except in the case of the toluidine isomer blend, which in spite of being the denser product is the latest to be added to the other streams in order to by-pass homogenization problems.
Abstract:
Aviation gasolines having an enhanced peak indicated mean effective pressure are provided by admixing with a leaded base aviation gasoline an aromatic amine of the formula NH2—Ar—(R1)n wherein R1 is selected from C1-C10 alkyl, halogen, and mixtures thereof provided that when R1 is alkyl it occupies the meta- or para-positions on the aromatic ring, Ar is a phenyl aromatic group and n is an integer from 0 to 3 to provide an aviation gasoline having a peak indicated mean effective pressure as determined by ASTM D-909 of greater than about 200 psi.
Abstract:
A domestic heating fuel composition, comprising (a) a paraffinic hydrocarbon composition comprising at least 90 wt % normal paraffins and/or iso-paraffins comprising from 6 to 24 carbon atoms, wherein the weight ratio of iso-paraffins to normal-paraffins is below 6 to 1, and (b) at least one compound having a C/H molar ratio of above 0.8 and soluble in component (a) at ambient conditions, wherein the component (b) is present in the fuel composition in an amount effective to increase the responsiveness of a yellow/red flame detector to a required threshold level.
Abstract:
Provided are additives of formula I for use in hydrocarbonaceous compositions, such as petroleum or liquid fuels: (I) wherein R1, R2, R3, R4, and R5 are as defined herein. The additives improve the corrosion resistance of the compositions and, when the composition is biodiesel, also improve microbial resistance. The additives further enhance the antimicrobial efficacy of any added biocides contained in such compositions.
Abstract:
Low dosage naphthenate inhibitors, such as a surfactant or hydrotrope, delivered into production fluids for contact with mixtures of oil and water, such as in a hydrocarbon producing formation, production equipment, or processing systems. Inhibitor compounds such as monophosphate esters and diphosphate esters exhibit surface-active properties that cause the inhibitors to self-associate at oil-water interfaces and inhibit interactions between organic acids in the oil with cations or cation complexes in the water. These compounds also inhibit aggregation of organic acid carboxylate salts that form when pH and pressure conditions are amenable to organic acid ionization. Preferred inhibitors do not form emulsions due to the formation of unstable mixed interface structures that result in coalescence of dispersed droplets. Naphthenate inhibitor compound dosages of less than 100 ppm can effectively inhibit naphthenate salts or other organic acid salts that can form precipitates or emulsions during crude oil production or processing.
Abstract:
Inhibiting naphthenate salts that can form precipitates or emulsions during crude oil production or processing. An effective amount of a naphthenate inhibitor, such as a hydrotrope, is provided into the production fluids for contact with mixtures of oil and water in the formation, the production equipment, or processing systems. It is believed that the naphthenate inhibitors, such as monophosphate ester or diphosphate ester, exhibit surface-active properties that cause the inhibitors to align and concentrate in a layer at the oil-water interface and thereby prevent interactions between organic acids in the oil phase with cations or cation complexes in the water. It is believed that the physical positioning and geometry of the naphthenate inhibitor blocks the growth of naphthenate salt crystals. However, it is preferred that the naphthenate inhibitors also avoid the formation of oil-in-water and water-in-oil emulsions.