Abstract:
The disclosure provides a gasification process for the production of a methane-rich syngas at temperatures exceeding 400° C. through the use of an alkali hydroxide MOH, using a gasification mixture comprised of at least 0.25 moles and less than 2 moles of water for each mole of carbon, and at least 0.15 moles and less than 2 moles of alkali hydroxide MOH for each mole of carbon. These relative amounts allow the production of a methane-rich syngas at temperatures exceeding 400° C. by enabling a series of reactions which generate H2 and CH4, and mitigate the reforming of methane. The process provides a methane-rich syngas comprised of roughly 20% (dry molar percentage) CH4 at temperatures above 400° C., and may effectively operate within an IGFC cycle at reactor temperatures between 400-900° C. and pressures in excess of 10 atmospheres.
Abstract:
The process for the dry fractionation of lignocellulosic biomass of at least 50% by weight of lignins, cellulose and hemicelluloses. The biomass is fragmented to obtain an ultrafine powder. The process includes at least one step of separating a fraction enriched with cellulose and a fraction enriched with lignin, hemicelluloses and minerals by electrostatic sorting of the ultrafine particles. Preferably, the fraction separation step includes a step of triboelectrostatic charging of ultrafine particles and at least one step of deviating a path in the electric field of the charged particles to sort the particles.
Abstract:
Embodiments of the invention provide a process in which a gas comprising biomethane having a heating value of less than about 925 BTU/cubic foot is introduced to a pipeline system that is connected to at least one source of natural gas having a heating value of at least about 950 BTU/cubic foot. The gas comprising biomethane combines with natural gas in the pipeline system to produce a mixed gas having a heating value below about 925 BTU/cubic foot. An amount of natural gas at least equal to the amount of gas comprising biomethane is withdrawn from the pipeline system for use as a transportation fuel, a fuel intermediate or as a feedstock for producing a fuel. The process can enable fuel credit generation and/or reductions in life cycle greenhouse gas emissions.
Abstract:
Multiple catalytic processing stations enable a method for producing volatile gas streams from biomass decomposition at discrete increasing temperatures. These catalytic processing stations can be programmed to maximize conversion of biomass to useful renewable fuel components based on input feedstock and desired outputs.
Abstract:
A system (10) for producing carbon monoxide as a step in a process for the production of carbon neutral fuel includes heating apparatus (11) arranged to heat coal to produce coke and a limekiln (32). The limekiln (32) has an inlet (34) for the introduction of limestone, a heater (35) for heating limestone contained therein and an outlet (36) for the release of carbon dioxide. A coke chamber (39) is operatively connected to the heating apparatus (11) to receive coke therefrom and is operatively connected to the limekiln outlet (36) to receive carbon dioxide therefrom. The coke chamber (39) is configured to react received coke with received carbon dioxide, thereby to produce carbon monoxide.
Abstract:
Embodiments of the invention provide a process in which a gas comprising biomethane having a heating value of less than about 925 BTU/cubic foot is introduced to a pipeline system that is connected to at least one source of natural gas having a heating value of at least about 950 BTU/cubic foot. The gas comprising biomethane combines with natural gas in the pipeline system to produce a mixed gas having a heating value below about 925 BTU/cubic foot. An amount of natural gas at least equal to the amount of gas comprising biomethane is withdrawn from the pipeline system for use as a transportation fuel, a fuel intermediate or as a feedstock for producing a fuel. The process can enable fuel credit generation and/or reductions in life cycle greenhouse gas emissions.
Abstract:
Embodiments of the invention provide a process in which a gas comprising biomethane having a heating value of less than about 925 BTU/cubic foot is introduced to a pipeline system that is connected to at least one source of natural gas having a heating value of at least about 950 BTU/cubic foot. The gas comprising biomethane combines with natural gas in the pipeline system to produce a mixed gas having a heating value below about 925 BTU/cubic foot. An amount of natural gas at least equal to the amount of gas comprising biomethane is withdrawn from the pipeline system for use as a transportation fuel, a fuel intermediate or as a feedstock for producing a fuel. The process can enable fuel credit generation and/or reductions in life cycle greenhouse gas emissions.
Abstract:
A method of producing heat for industrial purposes such as power generation can use at least one, if not two exothermic reactions. First, methane may be produced from carbon dioxide and hydrogen in a reactor. This reaction produces heat. The methane may be burned, or oxidized (which is also an exothermic reaction) to produce carbon dioxide and hydrogen. Oxygen and/or hydrogen may supplement the process as could be produced from the electrolysis of water. Carbon dioxide may be obtained from a variety of sources.
Abstract:
The present document describes a method and a system of distributing pyrolysis by-products comprising the step of producing pyrolysis by-products produced by small scale pyrolysis of waste at a production site to a by-product processor. The by-product processor may be the production site itself.
Abstract:
The method for catalytic methanation of synthesis gas includes the following steps: 1) feeding the synthesis gas into the bottom of a reactor of an upward concurrent flow transporting bed so as to adequately mix and preheat with methanation catalyst entering the bottom of the reactor until the activation temperature of the catalyst is reached and then the methanation reaction begins; and 2) after the methanation reaction, immediately passing the product gas and the catalyst grains outputted from the transporting bed into a gas-solid separator to perform a rapid separation so as to obtain the product gas.