Abstract:
A biomass pulverizing apparatus includes a pulverizing apparatus body including a feedstock supply pipe for supplying biomass feedstock from above in a vertical axial direction, a pulverizing table for placing the biomass feedstock, a drive section for rotationally driving the pulverizing table, a pulverizing roller for pulverizing the biomass feedstock by a pressing force, the pulverizing roller being operated in conjunction with the rotation of the pulverizing table, a blower means for forming an upward flow upward from below on the outer peripheral side of the pulverizing table so as to jet conveying gas for conveying the biomass powder in an air stream, and a classifier for classifying the biomass powder accompanied with the conveying gas.
Abstract:
A biomass-based fuel pellet, such as a fuel pellet which includes thermoplastic polymeric material and a substantial amount of cellulosic material, e.g. cellulosic material derived from biomass source(s), is provided. The fuel pellet commonly includes about 5 to 15 wt. % of the thermoplastic polymeric material and at least about 75 wt. % cellulosic material. Optionally, the fuel pellet may comprise a lignin additive. Many embodiments of the fuel pellets are suitable for use in a coal-fired furnace and/or in other industrial boiler applications.
Abstract:
The invention described is a process for improving the performance of a commercial coal or lignite fired boiler system by supplementing its normal coal supply with a controlled quantity of thermally beneficiated low rank coal, (TBLRC). This supplemental TBLRC can be delivered either to the solid fuel mill (pulverizer) or directly to the coal burner feed pipe. Specific benefits are supplied based on knowledge of equipment types that may be employed on a commercial scale to complete the process. The thermally beneficiated low rank coal can be delivered along with regular coal or intermittently with regular coal as the needs require.
Abstract:
A cyclonic processing system accepts unprocessed fragmentary material of a predetermined aerodynamic buoyancy range, keeps it suspended in a vortex and discharges it when it reaches a finished material aerodynamic buoyancy range. The cyclonic processing apparatus and method dries, mills, separates and/or mixes fragmentary material. The waste air from the apparatus is reduced in particle content. The apparatus and method may be used to process post consumer waste for recycling. Additionally, it may be used to harness waste heat from industrial processes.
Abstract:
Mineral additives and a method for operating a waste-to-energy furnace are provided in order to improve its operational performance and availability, increase the lifetime of the combustor building materials (refractory walls and heat-exchanger metallic tubes) and flue gas treatment equipment, improve ash quality, reduce emissions and avoid combustion problems such as agglomeration, slagging, deposition, and corrosion. A method for operating a waste-to-energy furnace, such as a fluidized bed reactor, pulverized-fuel combustor, grate combustor includes introducing mineral additive into the furnace. The method further includes heating at least a portion of the mineral additive either intimately in contact with the fuel, such that the ability of mineral additive to induce crystallization of the surface of forming ashes is enhanced, or minimizing the contact of the mineral additive with the fuel and the forming ashes, such that the solid-gas reactions between the mineral additive and the volatile compounds in the flue gas are favored and the mineral additive power to capture at least a portion of the inorganic volatile compounds present in the furnace is enhanced.
Abstract:
Disclosed is a control system for controlling the feed of a solid fuel in a combustion process. The system includes a control unit which is adapted to communicate by way of a communications link in the system, to receive from online measuring instruments online measurement data regarding a fuel coming from a fuel reception unit, and to control a feeding unit for delivering the measured fuel into a fuel silo on the basis of its content model and measurement data.
Abstract:
A method for controlling an NOx concentration in an exhaust gas in a combustion facility by: measuring a reaction velocity ki of each of a plurality of chars, each corresponding to a plurality of types of pulverized coals; determining a relationship between the NOx concentration in the exhaust gas and the reaction velocity ki for each of the chars; (iii) blending the plurality of the types of the pulverized coal, wherein a blending ratio of the plurality of the types of the pulverized coal is determined by using, as an index, a reaction velocity kblend of the char of the blended pulverized coal, which corresponds to a target NOx concentration or below, on the basis of the relationship; and supplying the blended pulverized coal to the combustion facility as the fuel of the combustion facility.
Abstract:
Systems and methods implementing the systems including a facility including a plurality of collection apparatuses distributed in the facility for ease of collection and transportation. The system also includes transportation subsystems for shipping filled inner containers to a processing subsystem and for transporting a fuel material or a land fillable material to incineration or landfill subsystems. The systems may also include a monitoring subsystem for monitoring the deployed collection apparatuses, inner containers, the fuel material and the land fillable material.
Abstract:
A fossil-fuel-fired system, which includes an emissions-control-agent dispenser, a furnace, an emissions monitor and, optionally, a controller, is disclosed. The emissions-control-agent dispenser provides a prescribed amount of organic-emissions-control agent, such as, for example, an opacity-control agent to the fossil-fuel-fired system. The furnace includes an exhaust communicating with the atmosphere. The emissions monitor is capable of measuring at least one property of the flue-gas communicated through the exhaust to the atmosphere. For example, when an organic-emissions-control agent is an opacity-control agent, the emissions monitor has the capability of at least measuring opacity. When included, the controller communicates with at least the emissions-control-agent dispenser and the emissions monitor.