Abstract:
In an embodiment, a device and method for identifying a change in a predetermined condition. The device is a patch injected with ink that transforms in response to a change in the predetermined condition, such as, a change in temperature or change in the ultraviolet (UV) index level. The ink includes thermochromic ink that transforms or identifiably changes based on a change in a temperature condition, and/or photochromic ink that transforms or identifiably changes based on a change in an UV index level condition. When temperature increases or decreases to reach one or more threshold temperature values, the thermochromic ink transforms in an identifiable manner to indicate a condition has be met. When the UV index level increase or decrease to reach one or more threshold UV index levels, the photochromic ink transforms in an identifiable manner to indicate that a condition has be met.
Abstract:
To easily obtain a quantity of received light with computation by only measuring pulses of an electric signal related to a flame sensor, a flame detecting system is disclosed comprising: a flame sensor to detect light and a calculating device, in which the calculating device includes an applied voltage generating portion configured to generate a pulse to drive the flame sensor, a voltage detecting portion configured to measure an electric signal flowing in the flame sensor, a storing portion configured to store sensitivity parameters of the flame sensor in advance, and a central processing unit configured to obtain a quantity of received light of a flame using parameters of a known quantity of received light, a pulse width, and a discharge probability of the sensitivity parameters, and a discharge probability obtained from an actual pulse width and the measured number of discharge times.
Abstract:
The ultraviolet sensor device comprises a semiconductor substrate, a dielectric layer above the substrate, a surface of the dielectric layer that is provided for the incidence of ultraviolet radiation, a floating gate electrode in the dielectric layer and an electrically conductive control gate electrode near the floating gate electrode. The control gate electrode is insulated from the floating gate electrode. A sensor layer is formed by an electrically conductive further layer that is electrically conductively connected to the floating gate electrode. The control gate electrode is arranged outside a region that is located between the sensor layer and the surface provided for the incidence of ultraviolet radiation. The sensor layer is discharged by incident UV radiation and can be charged or discharged electrically by charging or discharging the floating gate electrode.
Abstract:
A flame sensor detects the presence of a flame in a combustion system in which the flame emits light. The flame sensor includes a body connectable with the combustion system. A photodetector is supported in the body. The photodetector responds to light emitted by the flame and generates an electrical signal proportional to an intensity of the light. A window is supported in the body and located between the combustion system and photodetector. The window is susceptible to contamination from the combustion system and the contamination may decrease sensitivity of the photodetector. A light source is supported in the body. The light source emits light so that a predetermined amount of the light emitted by the light source reflects into the photodetector when contamination is present on the window and the photodetector generates a signal indicative of contamination on the window.
Abstract:
A flame detector includes a UV sensor sensitive to solar UV radiation and a secondary sensor sensitive to non-UV radiation. A controller is operatively connected to the UV sensor and the secondary sensor to: signal an alarm in response to receiving input from the UV sensor indicative of a strong UV source and input from the secondary sensor indicative of a weak non-UV radiation source; and suppress an alarm in response to receiving a signal from the UV sensor indicative of a strong UV source and a signal from the secondary sensor indicative of a strong non-UV radiation source.
Abstract:
A device (1), such as a detector or imaging device, for detecting ultraviolet light, is described. The device comprises a housing (4) for a chamber. Disposed within the housing is a charge carrier multiplier structure (9) comprising a dielectric sheet (10) having first and second opposite faces (11, 12) and having an array of holes (16) traversing the dielectric sheet between the first and second faces. The device includes a photocathode (13) supported on the first face of the dielectric sheet, having a work function of less than 6 eV. The device includes an anode (14) supported on the second face of the dielectric sheet.
Abstract:
A reporting system includes a mobile computing device that wirelessly communicates with one or more sensors to track the use of a protective product. Reports are provided on the mobile computing device to remind and motivate a user of the protective product to use it at times most beneficial for receiving the intended protection from it.
Abstract:
System and methods for accurate measurement and real-time feedback of solar ultraviolet exposure for management of ultraviolet dose. The systems can include a wearable device and a mobile device, the system performing accurate measurement of UV exposure.
Abstract:
An ultraviolet irradiation device that is used for a fluid to be irradiated having a low ultraviolet ray transmissivity, a spirally wound tube in which the fluid to be irradiated flows is supported and fixed, and an irradiation amount of ultraviolet rays with which the fluid is irradiated is increased. A tube 3 having ultraviolet ray transmitting property is spirally wound on an outer circumferential surface of a support pipe 5, a plurality of ultraviolet lamps 7 are disposed around an axis of the support pipe apart from the tube, an inner case 9 that supports the support pipe and that encloses the plurality of ultraviolet lamps is provided, and a fluid flows in the tube and is irradiated with ultraviolet rays. The tube which is a fluid channel is thereby fixed to the support pipe, so that breakage of the tube and the ultraviolet lamps 7 can be prevented.
Abstract:
A process for improving sensitivity of a film base, coated with a dispersion of a normally crystalline polyacetylenic compound in a non-solvating liquid which is dried on the film surface, to particular photon energy band, specifically, long wavelength UV; the polyacetylenic compound preferably having at least two conjugated acetylenic linkages and containing from 12 to 60 carbon atoms. The sensitization of the film to long wavelength UV is achieved via the addition of photoinitiator(s) capable of absorbing UV energy and converting it to free radicals.