Abstract:
An apparatus for determining the presence or concentration of target molecules comprises: a radiation source; a surface; a waveguide; a detector; and a spectral filter. The radiation source is operable to produce electromagnetic radiation. The surface defines a two dimensional array of receptor sites. The waveguide is arranged to receive the electromagnetic radiation produced by the radiation source, divide the electromagnetic radiation and direct a portion of the electromagnetic radiation to each one of a two dimensional array of receptor sites. The detector comprises a two dimensional array of sensing elements, each sensing element arranged to receive electromagnetic radiation from a different one of the two dimensional array of receptor sites. The spectral filter is provided between the surface and the detector.
Abstract:
The invention relates to a method and apparatus for monitoring yarn quality in the textile industry. Textile yarn is checked for quality to meet the required criteria such as diameter evenness and unwanted foreign fiber presence. The invention utilizes an artificial light illuminating the yarn, focusing element, diffraction element and the image sensor for capturing of focused diffracted rays from illuminated yarn image. The presence of foreign fibres in yarn and yarn diameter is determined by processing of captured image.
Abstract:
There is disclosed a method and an apparatus for monitoring textile yarn quality. Textile yarn is checked for quality to meet the required criteria such as diameter evenness and unwanted foreign fiber presence by utilizing an artificial diffuse light illuminating image sensor, with the yarn placed as an obstacle, into the pathway of the light, the contours of the light being focused for sharp image capture. The yarn diameter is determined by processing of focused yarn image.
Abstract:
A method for detecting a contamination of a cuvette of a turbidimeter. The turbidimeter includes a light source which emits a light beam directed to a cuvette, a scattering light detector, and a diffuser with a body and an actuator. The actuator moves the body between a parking position and a test position where the body is between the measurement light source and the cuvette, thereby interferes with the light beam, and generates a diffuse test light entering the cuvette. The method includes activating the actuator to move the body from the parking position into the test position, activating the light source, measuring a test light intensity received by the scattering light detector, comparing the test light intensity measured with a reference light intensity, and generating a contamination signal if a difference between a reference light intensity and the test light intensity measured exceeds a first threshold value.
Abstract:
A sensor device configured to be attached to a drug delivery device and configured to illuminate the drug delivery device when attached, the sensor device having an OLED having a transparent first electrode, a transparent second electrode and a central layer disposed between the first and second electrodes, the central layer comprising at least one organic layer, the at least one organic layer configured to emit light through the transparent first electrode, and an optical sensor arranged to receive light reflected from a surface of the drug delivery device, wherein the central layer of the OLED has a region without the at least one organic layer and wherein the optical sensor is arranged, when the sensor device is attached to the drug delivery device, to view a predetermined area of the surface of the drug delivery device through the region without the at least one organic layer.
Abstract:
The invention relates to an assembly (1) for analyzing a light pattern (3) caused by refraction and reflection at a precious stone (2), comprising a light source (4) for illuminating the precious stone (2), a retaining device (5) for retaining the precious stone (2), an in particular flat diffusing screen (6) for imaging the light pattern (3), and a camera (7) for recording the light pattern (3) imaged on the diffusing screen (6), wherein the assembly (1) comprises a semi-transmitting optical element (8) for deflecting, in the direction of the precious stone (2), the light (9) emitted by the light source (4) and for transmitting the light (10) refracted and reflected at the precious stone (2).
Abstract:
A system is described for obtaining images of a gemstone, and performing quantitative analysis on the images to obtain measures of properties of the gemstone. The system comprises a support structure for supporting the gemstone at an observation position. An illumination structure is arranged to illuminate the gemstone. The illumination structure comprises a plurality of radially dispersed directional light sources directed towards the observation position, the support structure and illumination system being rotatable relative to one another around a rotation axis so that the gemstone can be illuminated by one or more of the directional light sources at each of a plurality of rotational positions, the axis of rotation being normal to a selected facet of the gemstone. An imaging device is directed towards the gemstone for obtaining images of the gemstone at each of the rotational positions, the imaging device having an imaging axis parallel to or coincident with the axis of rotation. An image processor is provided for identifying sparkle regions in the images corresponding to reflections from individual light sources by individual facets and providing a quantitative measure of the gemstone on the basis of properties of the sparkle regions.
Abstract:
System (18, 28) for inspecting oil, which comprises a cell (280) through which oil (281) flows through a pipe. Inside said cell (280) the system comprises a lighting system (284) based on at least one LED diode and configured to supply a beam of white light to the flow of oil (281); a diffuser (286) situated between the lighting system (284) and the flow of oil (281), configured to provide homogeneous lighting to the lit area; an image capture system (282, 382) situated on the opposite side of the pipe through which the oil (281) flows in respect of the lighting system (284) and configured to capture a sequence of images of the oil which flows inside said pipe; a lens (283) situated between the image capture system (282) and the flow of oil (281), configured to focus the captured images; a calibration device (287) situated between the lens (283) and the flow of oil (281); a processor (2851) configured to process said sequence of images and to determine the presence of particles and bubbles and a degradation value of the oil.
Abstract:
The present application provides a non-dispersive infrared gas sensor. The non-dispersive infrared gas sensor may include an infrared source, an infrared detector, and a waveguide extending about the infrared source and the infrared detector. The waveguide may include a reflective diffuser thereon.
Abstract:
Certain exemplary embodiments can provide a system comprising: a diffuser defining a camera lens hole in a top portion of said diffuser, said diffuser adapted to receive at least one set of low angle lights; and a plurality of lights mounted on said diffuser in proximity to said camera lens hole.