Abstract:
A liquid crystal display device includes a pair of substrates, a liquid crystal between substrates and alignment layers disposed on the inner surface sides of the substrates. The alignment layer is made from a material including polyamic acid containing a diamine component and polyimide containing a diamine component different from the diamine component of the polyamic acid. The alignment layer is subjected to alignment treatment by irradiation of light. UV light can be irradiated in the oblique direction onto the alignment layer through a mask having openings. A reflecting plate can be arranged between a UV light source and the mask. Also, bank structures having a thickness from 0.1 to 0.15 μm can be provided on the alignment layer of the TFT substrate.
Abstract:
The invention relates to a liquid crystal display element, a method of manufacturing the element, and electronic paper having the element. The invention provides a liquid crystal element in which a change in a state of display attributable to an external force can be suppressed, a method of manufacturing the element, and electronic paper having the element. One blue pixel region is surrounded by four wall structures and four polymer layers without any discontinuity. The wall structures are formed on a bottom substrate and are in contact with a top substrate. The polymer layers are formed by injecting a cholesteric liquid crystal and polymeric substances (monomers or oligomers) which are materials different from both of the cholesteric liquid crystal and the wall structures between the top and bottom substrates and polymerizing the polymeric substances.
Abstract:
This invention discloses pre-formed electrochromic films that are used in assembly of electrochromic devices. These films are laminated to conductive substrates to form the electrochromic devices. The invention also discloses optical characteristics of the substrates for imparting durability to the electrochromic devices from solar radiation.
Abstract:
A photovoltaic array with improved thermal performance includes a photovoltaic array, an electro-optic shutter disposed on the photovoltaic array, and a control system connected to at least the electro-optic shutter. The control system, based upon input from a sensor, switches the electro-optic shutter between transmissive and reflective conditions so as to control exposure of light to the photovoltaic array.
Abstract:
A curing device comprises a reaction chamber, a workbench provided at a bottom of the reaction chamber, an ultraviolet lamp provided at the top of the reaction chamber for irradiating the workbench, and a light shielding plate provided under the ultraviolet lamp for shielding the second area of the workbench from the light of the ultraviolet lamp. The workbench comprises a first area and a second area surrounded by the first area, the first area corresponds to a non-display area of a display panel to be produced, and the second area corresponds to the display area of the display panel to be produced. The workbench comprises a heating device.
Abstract:
A liquid crystal display device includes a pair of substrates, a liquid crystal between substrates and alignment layers disposed on the inner surface sides of the substrates. The alignment layer is made from a material including polyamic acid containing a diamine component and polyimide containing a diamine component different from the diamine component of the polyamic acid. The alignment layer is subjected to alignment treatment by irradiation of light. UV light can be irradiated in the oblique direction onto the alignment layer through a mask having openings. A reflecting plate can be arranged between a UV light source and the mask. Also, bank structures having a thickness from 0.1 to 0.15 μm can be provided on the alignment layer of the TFT substrate.
Abstract:
In a liquid crystal display (LCD), for example an LCD monitor or an LCD-TV, a number of light management films, including a diffuser layer, lie between the light source and the LCD panel to provide bright, uniform illumination. In some embodiments, the diffuser layer is attached to the lower side of the LCD panel. Some, or all, of the light management layers may be attached together as a laminated stack of films. In some embodiments, the diffuser layer is formed with a recessed region on one side and another optical film positioned within the recessed region.
Abstract:
An object of the present invention is to provide a polarizing plate protective film exhibiting a reduced variation value retardation, which is highly stable against polarizing plate degradation, polarizing plate dimension, and polarizing plate curl. Disclosed is a cellulose ester film possessing cellulose ester, polymer X having a weight average molecular weight of 2000-30000 prepared by copolymerizing ethylenic unsaturated monomer Xa containing no aromatic ring and hydrophilic group within a molecule and ethylenic unsaturated monomer Xb containing no aromatic ring but a hydrophilic group within a molecule, and polymer Y having a weight average molecular weight of 500-3000 prepared by polymerizing ethylenic unsaturated monomer Ya containing no aromatic ring.
Abstract:
A photo-luminescent (PL) liquid crystal display (LCD) including a blue dichroic mirror layer disposed under a light emitting layer is provided. Visible light generated from the light emitting layer is mostly reflected to the front side of the PL LCD, thereby increasing the light utilization efficiency thereof. A blue PL quantum dot layer is formed in blue light regions, thereby improving a narrow viewing angle and an orientation in blue pixels. An ultraviolet (UV) filter blocking UV light in the ambient light is formed to protect the light emitting layer from the excitation caused by external light, thereby preventing degradation of contrast caused by an undesired light emission.
Abstract:
A protective measure against rainfalls or ultraviolet rays is applied to planar display devices which comprise a large-sized display apparatus thus allowing display modules which include display devices to be used outdoors and, at the same time, the structure of a frame is simplified thus realizing the reduction of weight, thickness and a manufacturing cost of the large-sized display apparatus. In a large-sized display apparatus arranging a plurality of planar display devices, as the planar display device, a display device which comprises a display device body which includes a display region in the inside thereof and has a peripheral portion of the display region sealed, and a protective glass which is fixedly mounted on a front surface of the display device body using an adhesive material is used.