Abstract:
According to one embodiment, a display device includes a first substrate with a first alignment film, a second substrate with a second alignment film, and a liquid crystal layer interposed therebetween. The first substrate has first and second electrodes. An initial alignment direction of liquid crystal molecules of the liquid crystal layer is parallel to a first direction or a direction orthogonal to the first direction. The second electrode includes comblike electrodes extending parallel to the first direction and a connecting portion which connects the comblike electrodes. The connecting portion includes a projection which projects in a second direction more than an outermost comblike electrode.
Abstract:
A light emitting device is presented. The device comprises an array of pixels and an electrode arrangement, wherein said array of pixels comprises pixels of first and second groups comprising first and second pluralities of light emitting nanorods aligned along first and second predetermined axes respectively, the axes being substantially perpendicular to each other, and the pixels of said array are associated with a plurality of electrode elements of said electrode arrangement thereby enabling modulation of optical emission of one or more pixels separately from one or more other pixels of said pixel array by controllable application of an electric field, the device being therefore configured and operable as an active pixel emitter.
Abstract:
An array substrate, a method for fabricating the same and a display device are disclosed. The array substrate comprises a plurality of gate lines and a plurality of data lines which intersect each other to define a plurality of pixel regions, each of the pixel regions comprises a thin film transistor and further comprises: a base substrate; more than one protrusion disposed apart from each other on the base substrate; a first electrode layer comprising at least one first electrode strip disposed in a gap between adjacent protrusions; a second electrode layer comprising at least one second electrode strip disposed on the protrusions.
Abstract:
A 3D display is provided, at least comprising a display module, a backlight module disposed beneath the display module, and a barrier module disposed above the display module. The barrier module comprises a bottom substrate having a bottom electrode layer, an upper substrate having an upper electrode layer, and a liquid crystal layer disposed between the bottom substrate and the upper substrate. At least one of the bottom electrode layer and the upper electrode layer comprises at least two finger electrodes interlaced to each other, and voltages with opposite direction are applied on the two finger electrodes at the same time interval in a 3D driving mode.
Abstract:
A display panel includes a first sub-pixel electrode and a second sub-pixel electrode alternating with each other to form a horizontal electric field, a first data line transmitting a first data voltage to the first sub-pixel electrode, and a second data line transmitting a second data voltage to the second sub-pixel electrode, wherein the second sub-pixel electrode is formed to overlap the first and second data lines.
Abstract:
According to an aspect, a display device has a first electrode, a second electrode and liquid crystal layer. When a voltage is not applied to the first and second electrodes, the major axes of the liquid crystal molecules are oriented in a third direction. When a voltage is applied between the first and second electrodes, the major axes are oriented so as to rise in a direction perpendicular to a first substrate while rotating clockwise in a vicinity of one of long sides of comb tooth portion that face each other and counterclockwise in a vicinity of the other of the long sides. An angle between an electrode base-side portion of a long side of each comb tooth portions and the third direction is larger than an angle between a distal end-side portion of the long side of each comb tooth portions and the third direction.
Abstract:
A display-mode switching device includes a substrate, a plurality of first electrode stripes, a plurality of second electrode stripes, a plurality of third electrode stripes, a fourth electrode stripes, and a common electrode covering a surface of the substrate. The first electrode stripes, the second electrode stripes, the third electrode stripes and the fourth electrode stripes are disposed on the insulating layer, and each first electrode stripe, each third electrode stripe, each second electrode stripe and each fourth electrode stripe are sequentially arranged along a direction.
Abstract:
It is an object of the present invention to apply a sufficient electrical field to a liquid crystal material in a horizontal electrical field liquid crystal display device typified by an FFS type. In a horizontal electrical field liquid crystal display, an electrical field is applied to a liquid crystal material right above a common electrode and a pixel electrode using plural pairs of electrodes rather than one pair of electrodes. One pair of electrodes includes a comb-shaped common electrode and a comb-shaped pixel electrode. Another pair of electrodes includes a common electrode provided in a pixel portion and the comb-shaped pixel electrode.
Abstract:
A viewing angle switchable liquid crystal display panel includes a first substrate, a second substrate, a liquid crystal layer disposed between the first substrate and the second substrate, a plurality of color sub-pixels and a plurality of viewing angle control (VAC) pixels. The liquid crystal layer includes liquid crystal molecules sandwiched between the first substrate and the second substrate. The liquid crystal molecules of each color sub-pixel include twisted nematic liquid crystal molecules. Each of the color sub-pixels includes a first pixel electrode disposed on an inner surface of the first substrate, and a second pixel electrode disposed on an inner surface of the second substrate. Each of the viewing angle control pixels includes a first electrode and a second electrode disposed on the inner surface of the first substrate, and a third electrode disposed on the inner surface of the second substrate.
Abstract:
A liquid crystal optical device includes a liquid crystal optical unit and a drive unit. The liquid crystal optical unit includes a first substrate unit, a second substrate unit, and a liquid crystal layer. The first substrate unit includes a first substrate, a plurality of first electrodes, and a second electrode. The second substrate unit includes a second substrate and a first opposing electrode. The drive unit applies a first voltage between the first opposing electrode and the first electrodes and applies a second voltage between the first opposing electrode and the second electrode in a refractive index distribution forming operation. The drive unit applies a third voltage between the first opposing electrode and the first electrodes and applies a fourth voltage between the first opposing electrode and the second electrode in a first preliminary operation prior to the refractive index distribution forming operation.