Abstract:
An automatic load transfer device is provided for automated material handling systems of the type having a tow AGV pulling a train of trailers along a predetermined path between stations. The device has a base positioned adjacent to the path with spaced apart rails that support a movable carriage which shifts between retracted and extended positions. A conveyor having a plurality of side-by-side fingers with moving conveyor elements is supported on the carriage by a lift which shifts the conveyor between lowered and raised positions. The carriage, conveyor elements, and lift have separate drives that are operably connected with a controller which sequentially activates the same to load and/or unload loads onto and/or from the trailers.
Abstract:
The present invention relates to an automatic system for controlling the steering of a non-railed transfer crane travelling along a lane indicant. The system comprises a vision sensor for continuously photographing the condition of a crane's actual travelling direction with respect to lanes represented by the lane indicant, and outputting predetermined deviations (distance as well as angle) showing off-centered degrees between the crane's actual travelling direction and the lanes based on the photographed image signal, and a deviation processor for outputting a control signal to a motor driver so that the crane can travel toward removing the deviation distance. By properly changing a rotative velocity of the crane's wheels, the present invention prevents the crane's travelling direction from being off-centered from the lanes.
Abstract:
The control system comprises an induction cable installed along a running course between a loading station and unloading station, a detecting coil mounted on a work vehicle for detecting current flowing through the induction cable, a steering control device responsive to the output of the detecting coil for steering the vehicle to run along the running course, a vehicle position detector for detecting the vehicle reaching a predetermined position, a vehicle speed commanding device responsive to the output of the vehicle position detector for commanding acceleration and deceleration of the vehicle, and a vehicle speed control device responsive to the difference between the commanded vehicle speed and the actual vehicle speed for controlling the vehicle speed. Thus, the vehicle is controlled to run along a predetermined running course between the loading station and the unloading station.
Abstract:
A flexible material handling system for can handle varied loads and placements including operation in varying weather conditions, and integrates safety systems to tolerate pedestrians and manual vehicles in an operating environment. An autonomous vehicle is operable along a vehicle traversal path within a predetermined set of environmental conditions. A GPS base station is operatively in communication with the autonomous vehicle. A supervisor/orchestrator is operatively in communication with the autonomous vehicle and the GPS base station and is operative to coordinate movement of the autonomous vehicle along the vehicle traversal path and assign one or more tasks for the autonomous vehicle to accomplish.
Abstract:
A vehicular system where a vehicle moves in a traveling area in which magnetic markers are arranged so that magnetic polarities form a predetermined pattern and a wireless tag is annexed correspondingly to some of the magnetic markers, the wireless tag outputting, by wireless communication, tag information allowing a position of the magnetic marker to be identified, includes a first position identifying part which identifies a vehicle position where the vehicle is located based on the position of the magnetic marker identified by using the tag information and a second position identifying part which identifies, on a route after the vehicle passes over the magnetic marker serving as a reference when the first position identifying part identifies the vehicle position, a magnetic marker newly detected by the vehicle based on detection history of magnetic markers and identifies the vehicle position based on the position of the identified magnetic marker.
Abstract:
A system and method are disclosed, which can detect and process a position of at least one storage space device moving a bulk material. A first storage space device can have a gantry having two gantry legs, each of the two gantry legs supported on a linearly displaceable foot element. The system can include at least one first non-contact distance sensor, which is fitted on one of the two foot elements to measure a first relative distance between the one foot element and a first fixed reference point. A second non-contact distance sensor is fitted to the other of the two foot elements in order to measure a second relative distance between the other foot element and a second fixed reference point, and an evaluation unit is configured to determine rotation of the first storage space device about a central vertical axis and control the movement of the foot elements.
Abstract:
Systems, equipment and processes involving one or more aspects such as extending the scope of automation in port container facilities, increasing port capacity within fixed land resources, increasing operational productivity, increasing safety, increasing the velocity and reliability of goods movement, increasing freight security, reducing negative environmental impacts, and/or reducing the overall cost of goods movement are disclosed. In some implementations, storage areas may be accessed by automated guided vehicles which receive and unload containerized loads.
Abstract:
An automatic load transfer device is provided for automated material handling systems of the type having a tow AGV pulling a train of trailers along a predetermined path between stations. The device has a base positioned adjacent to the path with spaced apart rails that support a movable carriage which shifts between retracted and extended positions. A conveyor having a plurality of side-by-side fingers with moving conveyor elements is supported on the carriage by a lift which shifts the conveyor between lowered and raised positions. The carriage, conveyor elements, and lift have separate drives that are operably connected with a controller which sequentially activates the same to load and/or unload loads onto and/or from the trailers.
Abstract:
An autonomous mobile robot system having plural mobile robots and integrative planning means to plan the moving zone of the plural mobile robots, wherein: the integrative planning means is installed on the plural mobile robots including a main mobile robot to travel autonomously and a subordinate mobile robot to travel on the basis of the instructions of the main mobile robot; and each of the plural mobile robots is provided with, at least, measurement means to measure the situation of ambient environment, communication means to communicate between the integrative planning means and the other mobile robot, main device position recognition means to recognize the position of the mobile robot, subordinate device position recognition means to recognize the position of the other mobile robot, travel planning means to plan travel routes of the mobile robot and the other mobile robot, and travel control means to control a drive mechanism in accordance with the travel planning means. A guided vehicle and a truck or the like can travel autonomously and cooperatively while obtaining information on ambient environment without mechanical connection and can automatically be separated from and merged with each other.
Abstract:
The present invention relates to an arrangement for a Ro—Ro vessel, which exhibits a number of cargo-receiving spaces provided with a driving surface internally in the vessel, and with a ramp extending between one such space and a quay, along which ramp driverless cargo handling vehicles (7), known as AGV vehicles, are capable of being driven between designated parking places for the purpose of transporting cargo between the quay and the aforementioned cargo-receiving space of the vessel. Means (9) are provided for causing the cargo handling vehicles (7) to be guided between the aforementioned spaces and the quay and into the intended train of vehicles in the designated location in a line (II) and without connecting the cargo handling vehicles (7) to one another.