Abstract:
A method for generating an X-ray includes the steps of: flattening an electron beam with a circular cross section by means of Lorentz force to form a flat electron beam with a flat cross section under the condition so that an intensity of the flat electron beam per unit area can be set higher than an intensity of said electron beam per unit area; and irradiating the flat electron beam onto a target, thereby generating an X-ray.
Abstract:
A method for generating an X-ray includes the steps of: flattening an electron beam with a circular cross section by means of Lorentz force to form a flat electron beam with a flat cross section under the condition so that an intensity of the flat electron beam per unit area can be set higher than an intensity of said electron beam per unit area; and irradiating the flat electron beam onto a target, thereby generating an X-ray.
Abstract:
An anode plate for an X-ray tube includes an outer edge, a center region, and a plurality of slots disposed along the outer edge and extending toward the center region (210b) with each of the plurality of slots including a slot end. The anode plate further includes slot termination material disposed around a least a portion of the periphery of one or more of the slot ends, the slot termination material operable to reduce the tension stress or compression stress at the slot end.
Abstract:
This invention involves the application of dense, metallurgically bonded deposits of tungsten and tungsten rhenium coatings onto preformed based x-ray anodes to be used as focal tracks. The coatings are applied by low pressure DC plasma spraying. The invention also includes heat treatments that further densify the as-applied coatings improving their suitability for use as focal tracks.
Abstract:
A nanocomposite comprising a plurality of nanoparticles dispersed in a molybdenum-based matrix, and an x-ray tube component formed from such a nanocomposite. The nanocomposite contains volume fraction of nanoparticle dispersoids in a range from about 2 volume percent to about 20 volume percent. A method of making such molybdenum-based nanocomposites is also disclosed.
Abstract:
An x-ray tube assembly is provided comprising a tube casing assembly including a plurality of vertical mount posts. An insulator plate is mounted to the plurality of vertical mount posts such that the insulator plate can translate vertically on the posts. A cathode assembly is mounted to the insulator plate and generates both an eccentric moment and a vertical expansion in response to a cathode power load. A semi-compressible element is positioned between at least one of the vertical mount posts and the insulator plate. The semi-compressible element becomes incompressible at a cathode power threshold such that the vertical expansion is translated into a correction moment countering the eccentric moment.
Abstract:
A composite stator is disclosed for use with rotationally driven apparatus, particularly high voltage x-ray tubes. The composite stator generally comprises a core, a plurality of motor windings, and a retaining band. The core is comprised of two or more core sections having slots defined therein for receiving the motor windings. The motor windings are wound through and between the slots of the core sections, after which the core sections are joined together to form the core. The core sections are maintained in an assembled configuration by the retaining band. The motor windings are interconnected to comprise the electromagnetic pole pairs of the composite stator, thereby allowing the stator to induce the rotation of the rotor assembly of the high voltage x-ray tube.
Abstract:
An x-ray tube has a stationary cathode and a rotating anode in a vacuum housing. The anode is positioned on a housing-fixed axle such that it can be rotated, and is fashioned as a hollow body in the interior of which an axle-fixed ring projection is disposed, such that, at least between an inner surface of the rotating anode and the adjacent outer surface of the ring projection, a gap exists that is filled with liquid metal and forms a liquid-metal fluid bearing for the rotating anode.
Abstract:
A rotary current-collecting device includes a rotary slip ring and brushes coming into sliding contact with the outer peripheral surface of the slip ring. The brush-holding ring has an inner surface to which three brush-holding springs are fixed by screws. Each of the brushes is fixed to the tip end of the brush-holding spring and is pushed against the outer surface of the slip ring under the resilient restoration force of the brush-holding spring. When the slip ring revolves, the brushes come into sliding contact with the outer peripheral surface of the slip ring. The brush is made of a metal-graphite compound consisting of 70 weight percent copper and 30 weight percent graphite. The slip ring is entirely made of glassy carbon, so that the brush abrasion can be reduced.
Abstract:
A shield structure and focal spot control assembly is provided for use in connection with an x-ray device that includes an anode and cathode disposed in a vacuum enclosure in a spaced apart arrangement so that a target surface of the anode is positioned to receive electrons emitted by the cathode. The shield structure is configured to be interposed between the anode and the cathode and includes an interior surface that defines an aperture or other opening through which the electrons are passed from the cathode to the target surface of the anode. Additionally, fluid passageways defined in connection with the shield structure enable cooling of the shield structure. Finally, a magnetic device disposed proximate the cathode facilitates control of the location of the focal spot on the target surface of the anode.