Abstract:
A sealing electrode for discharge lamp having electrically conductive cup, and an emitter pellet is disclosed. The cup seals a passage into the discharge lamp, and additionally supports the electrode pellet or tip for the discharge. The design enables the emitter, electrode and seal structure to be made separately off line, while also enabling the emitter to be protected from contaminants during subsequent assembly.
Abstract:
A sealing electrode for discharge lamp having electrically conductive cup, and an emitter pellet is disclosed. The cup seals a passage into the discharge lamp, and additionally supports the electrode pellet or tip for the discharge. The design enables the emitter, electrode and seal structure to be made separately off line, while also enabling the emitter to be protected from contaminants during subsequent assembly.
Abstract:
The electric high-pressure discharge lamp has tungsten electrodes (2) in a light-transmitting lamp vessel (1) which is closed in a gastight manner. The electrodes (2) comprise an emitter, preferably in the form of an inner coiled-coil (14), which is loosely retained in a cavity (12) of a basket (6) of the electrode (2). The inner coil (14) acts as a non-oxidic emitter. The lamp retains its initial light output to a high degree throughout its life.
Abstract:
A hollow cathode having at least a portion of the inner, outer or both surfaces coated with a layer of a getter material is described. Some methods for the production of the hollow cathode of the invention are also described, which include cathodic and electrophoretic deposition of the getter layer onto the hollow cathode.
Abstract:
This invention improves the stability and control of high-pressure glow discharges by means of a microhllow cathode discharge. The microhollow cathode discharge, which is sustained between two closely spaced electrodes with an opening formed in the electrodes, serves as a plasma cathode for the high-pressure glow. Small variations in the microhollow cathode discharge voltage generate large variations in the microhollow cathode discharge current and consequently in the glow discharge current. In this mode of operation the electrical characteristic of this invention resembles that of a vacuum triode. Using the microhollow cathode discharge as a plasma cathode, stable, dc discharges in argon up to atmospheric pressures can be generated. Additionally, parallel operation of these discharges allows for the generation of large volume plasmas at high gas pressure through superposition of individual glow discharges. Thus, this invention allows simultaneous generation of relatively high electron densities at relatively low temperatures with stable, direct current, homogenous glow discharge plasma at relatively high pressure.
Abstract:
The electric high-pressure discharge lamp has tungsten electrodes (2) in a light-transmitting lamp vessel (1) which is closed in a gastight manner. The electrodes (2) comprise an emitter, preferably in the form of an inner coiled-coil (14), which is loosely retained in a cavity (12) of a basket (6) of the electrode (2). The inner coil (14) acts as a non-oxidic emitter. The lamp retains its initial light output to a high degree throughout its life.
Abstract:
The invention is directed to an improved hollow cathode lamp (15). In the preferred embodiment, the lamp is comprised of a stem (23), a cathode lead (18) which passes through the stem, and a getter (26). The improvement includes a flash shield (28) positioned between the getter and the stem, whereby the flash shield will limit the deposit of getter metal on the stem when the getter flashes. The flash shield may be a circular disk and composed of nickel. The flash shield may include an evacuation passage (46). The flash shield may also be capable of being heated to about 1000° C. during flashing, whereby the flash shield may be heated so as to convectionally repel the getter metal when the getter flashes.
Abstract:
The invention is directed to an improved hollow cathode lamp (15). In the preferred embodiment, the lamp is comprised of a stem (23), a cathode lead (18) which passes through the stem, and a getter (26). The improvement comprises a flash shield (28) positioned between the getter and the stem, whereby the flash shield will limit the deposit of getter metal on the stem when the getter flashes. The flash shield may be a circular disk and composed of nickel. The flash shield may include an evacuation passage (46). The flash shield may also be capable of being heated to about 1000null C. during flashing, whereby the flash shield may be heated so as to convectionally repel the getter metal when the getter flashes.
Abstract:
A ceramic cathode fluorescent discharge lamp is provided including a pair of electrodes, a bulb plated with a fluorescent body on an inner surface of same, at least one of said pair of electrodes being a ceramic cathode having a bottomed cylindrical housing including an electron emission material of an aggregate type porous structure of conductive oxide having a first component consisting of at least one of Ba, Sr, and Ca, a second component consisting of at least one of Zr and Ti, and a third component consisting of at least one of Ta and Nb, said aggregate type porous structure having a surface plated with a conductive or semiconductive layer of at least one of carbide, nitride and oxide of Ta or Nb, rare gas being sealed in said bulb, and sealing pressure of said rare gas being in the range between 10 Torr and 170 Torr.
Abstract:
A field controlled plasma discharge display element is disclosed for light source use in single element and multiple element plasma discharge electrostatic printers. The display element includes a pair of hollow discharge electric field electrodes, and a third electrode positioned external to and aligned with the discharge electric field electrodes for generating a control electric field proximate to the discharge electric field. The control electric field is used to control the intensity of the plasma discharge by distorting the shape of the generated discharge electric field. The single element plasma discharge device is modulated in accordance with the image to be printed and the modulated output is scanned across the photoconductive surface to produce the latent image. The multi-element matrix hollow cathode discharge device, on the other hand, generates the latent image on the photoconductive surface using either a line imaging (using a one by y matrix discharge device) effect or a page imaging (using an x by y matrix discharge device) effect.