Abstract:
Multipath components of transmitted data symbols are received with individual delays and processed by a RAKE having a number of fingers. A delay profile indicating magnitudes for a first number of delay values is provided. Estimated magnitudes for a second number of delay values located between the first number of delay values are calculated by interpolation, and a combined delay profile is provided by combining the magnitudes for the first and second number of delay values. Delay values for peaks in the combined delay profile are determined, and a number of peak delay values (P1, P2, P) comprising the largest peak are selected from the combined delay profile. At least some of the selected peak delay values are provided to the RAKE and assigned to the fingers. This allows a reduction of current consumption and dye area, while still providing delay values with sufficient resolution for the RAKE.
Abstract:
Under a sectorized cell architecture in a mobile communication system, a scrambling code applied to multiplication of a transmission signal is selected and switched among different types of downlink physical channels in a unified manner. One of multiple transmission signals to be transmitted on a corresponding one of the different types of downlink physical channels is generated. A first code is selected according to the type of the physical channel to enable multiplying the transmission signal by the first code. The transmission signal is multiplied by an intracell common scrambling code used in common among sectors in a same cell in addition to or in place of the multiplication of the first code. The transmission signal multiplied by at least one of the first code and the intracell common scrambling code is transmitted on the corresponding physical channel.
Abstract:
Disclosed are a wireless communication base station and a total transmission power regulating method that reduce interference to macrocell users near a femtocell and interference to neighboring femtocell users near the femtocell in a balanced manner, while ensuring throughput of the femtocell users. A reception power measuring unit (214) measures the reception power of a CPICH. A cell type discriminating unit (216) judges whether the received signal is a signal from a macro base station or a signal from a femto base station. When a signal from a macro base station is received, a total downlink transmission power setting unit (217) executes a first-stage interference regulation based on the strongest CPICH reception power value and calculates a tentative value for the total downlink transmission power of a femto base station (110). When a signal from a peripheral femto base station is received, the total downlink transmission power setting unit (217) executes a second-stage interference regulation within a fixed power regulation range for the second-stage interference regulation based on the strongest CPICH reception power value, and calculates a final total downlink transmission power value.
Abstract:
A method of interconnecting a CDMA cellsite having signal advancing capabilities with at least one remote microcell without re-synchronization capabilities. The method of the present invention sufficiently advances the signal to compensate for the time delay induced by communication signal travel over a fiber optic connection between a base station cellsite and a remote microcell.
Abstract:
Unassigned finger processors are used to process and measure the arrival times of transmissions from base stations not in the active set. A first set of one or more base stations in active communication with the remote terminal is identified and each base station in the first set is assigned at least one finger processor. A second set of one or more base stations not in active communication with the remote terminal is also identified and an available finger processor is assigned to each of at least one base station in the second set. A (signal arrival) time measurement is then performed for each base station, and outputs indicative of the measurements are provided for further processing.
Abstract:
Among other things, a method performed by a first access point is described. The method includes outputting signals. At least some of the signals interfere with communication between a device and a second access point. The method also includes determining whether to output the signals in a predefined mode based on dynamically calculated values of a parameter. The parameter is related to signal interference at the device. If it is determined to output the signals in the predefined mode, for a time period, the first access point outputs signals in the predefined mode.
Abstract:
Aspects of a method and system for interference suppression using information from non-listened base stations are provided. In this regard, one or more circuits in a wireless communication device may be operable to receive a raw signal comprising one or more desired signals from one or more serving base transceiver stations (BTSs) and comprising one or more undesired signals from one or more non-listened BTSs. The one or more circuits may be operable to generate first estimate signals that estimate the one or more undesired signals as transmitted by the one or more non-listened BTSs, generate an interference suppressed version of the raw signal based on the first estimate signals, and recover the one or more desired signals from the interference suppressed version of the raw signal. The non-listened BTSs may comprise one or more BTSs that are not serving the wireless communication device and are not involved in a handoff of the wireless communication device.
Abstract:
Aspects of a method and system for processing signals utilizing a programmable interference suppression module are provided. In this regard, a received signal may be iteratively processed to generate an interference suppressed representation of the received signal. The iterative processing may comprise a weighting iteration; an addback weighting and un-addback iteration, and an addback iteration. The weighting iteration may comprise generating one or more first estimate signals that estimate user signals present in the received signal. The addback, weighting, and un-addback iteration may comprise generating one or more incremental estimate signals based on the one or more first estimate signals and the one or more second estimate signals. The addback iteration may comprise generating an interference suppressed representation of the received signal based on at least the one or more second estimate signals.
Abstract:
A method, an apparatus, and a computer program product for wireless communication are provided in which one or more semi-static parameters associated with at least one neighboring eNode B (eNB) and an interfering user equipment (UE) are detected, at an eNB, and a blind interference reduction scheme based on the one or more detected semi-static parameters to reduce a signal from the interfering UE is applied.
Abstract:
A cell search method for a multi-mode telecommunication apparatus is disclosed. The method comprises receiving signals present in a frequency range; transforming received signals into frequency domain; estimating power spectral density from transformed signals; estimating probability of different communication modes by correlating the estimated power spectral density with power spectral density signatures of said different communication modes; and performing cell search according to estimated most probable communication mode. Such an apparatus and a computer program for performing the method are also disclosed.