Abstract:
Embodiments herein achieve a method and system for selecting non-coherent spreading sequences with binary alphabets {0, 1} with variable spreading factors. The method generates circular shift equivalent sets of spreading sequences by circularly shifting base sequences with elements {1, 0} and having at least one variable spreading factor. The method determines whether each spreading sequence in the circular shift equivalent set meets pre-defined spreading sequence criteria. The spreading sequence criteria comprise balanced criteria, a non- repetition criteria, non-circular criteria, and conjugate criteria. Furthermore, the method selects the spreading sequence from expansions of at least one spreading sequence from the circular shift equivalent sets in response to determining that the spreading sequences in the circular shift equivalent sets meets the pre-defined spreading sequence criteria.
Abstract:
A protocol for optimizing the use of coded transmissions such as over wireless links. In this technique, interframes are split into segments selected to be an optimum size according to transmission characteristics of the radio channel. The inverse process is applied at the receiver. Using this scheme, segments containing erroneous data may be resent.
Abstract:
A method, a device, and a non-transitory storage medium that stores instructions to store one or multiple instances of first data that indicate one or multiple types of forward error correction (FEC) coding schemes supported by an end device; generate a radio resource control connection request; select one of the one or multiple instances of first data during the generation of the radio resource control connection request; include the one of the one or multiple instances of first data in the radio resource control connection request in response to the selection; and transmit the radio resource control connection request to a wireless station of a wireless network in response to the inclusion.
Abstract:
A system that incorporates teachings of the subject disclosure may include, for example, a method for analyzing a wide frequency band with respect to signal power levels in specified narrow frequency bands, detecting narrow band signal power levels received in the specified narrow frequency bands, determining an average composite wideband power level from the narrow band signal power levels, determining an adaptive threshold, tracking narrow band interferers according to the adaptive threshold and the average composite wideband power level, and transmitting a report descriptive of the narrow band interferers. Other embodiments are disclosed.
Abstract:
Systems and methods for generating and transmitting ranging signals and data signals from transmitters in a wireless positioning system, and also for receiving and processing those signals at a mobile device. Different approaches are used, including separately transmitting the ranging signals and the data signals based on time, frequency, code, phase, or any combination thereof.
Abstract:
A base station is provided for receiving an acknowledgement or negative acknowledgement (ACK/NACK) signal, including a transmitting unit configured to transmit a control signal using one or a plurality of CCE(s). The base station also includes a receiving unit configured to receive an ACK/NACK signal, the ACK/NACK signal being multiplied by an orthogonal sequence, by a sequence defined by a cyclic shift, and by either a first value or a second value, wherein the first value rotates a constellation of the ACK/NACK signal by 0 degrees and the second value rotates the constellation of the ACK/NACK signal by N degrees, which is different from 0 degrees.
Abstract:
Method and apparatus are provided for mapping an operating frequency band of a mobile station device in a mobile communication system. As operating frequency band position at the time of idle mode of respective mobile station devices is arranged so as to be distributed throughout a unique frequency bandwidth of a base station device.
Abstract:
Receivers in a mobile device are configured to mitigate receiver overload and fully or nearly-fully utilize available spectrum for communication. Configuration is dictated at least in part by at least one of radio link quality or available receiver specifications, and it can be affected by the mobile device or a base station that serves the mobile device. Receiver configuration includes various spectrally asymmetric receivers that tune respective disparate portions of the available spectrum to maximize utilization thereof in the spectral regions prone to overload conditions. In severe overload conditions, a single receiver can be configured to operate in a frequency band spectrally adjacent to a sub-band that leads to overload conditions when employed for telecommunication. To improve performance, the single receiver configuration can be supplemented with at least one of transmit diversity operation, asymmetric multicarrier spreading, or downlink power boost of asymmetrical multicarrier spreading.
Abstract:
A signal transfer device includes a signal transmitter, a first amplitude adjustment component, an adjustment signal output component, a detector and a second amplitude adjustment component. The signal transmitter outputs signals to first and second transfer paths based on single-phase or differential input signal. The first amplitude adjustment component adjusts at least one of amplitudes of the signals transferred to the first and second transfer paths based on a predetermined amplitude ratio. The adjustment signal output component outputs adjustment signals to the first and second transfer paths. The detector detects the adjustment signals. The second amplitude adjustment component adjusts at least one of the amplitudes of the signals transferred to the first and second transfer paths based on detection result of the detector.
Abstract:
Embodiments herein achieve a method and system for selecting non-coherent spreading sequences with binary alphabets {0, 1} with variable spreading factors. The method generates circular shift equivalent sets of spreading sequences by circularly shifting base sequences with elements {1, 0} and having at least one variable spreading factor. The method determines whether each spreading sequence in the circular shift equivalent set meets pre-defined spreading sequence criteria. The spreading sequence criteria comprise balanced criteria, a non-repetition criteria, non-circular criteria, and conjugate criteria. Furthermore, the method selects the spreading sequence from expansions of at least one spreading sequence from the circular shift equivalent sets in response to determining that the spreading sequences in the circular shift equivalent sets meets the pre-defined spreading sequence criteria.