Abstract:
A CDMA system according to an embodiment of the invention employs a technique for power optimized user loading that obtains a desired allocation of different radio configuration calls. The technique takes advantage of the relatively low power requirements of RC3 calls for low load conditions, while increasing the number of RC4 calls for high load conditions. As the load increases, the percentage of RC4 calls increases while the percentage of RC3 calls decreases. The technique strives to minimize overall power consumption in the system for all call load conditions, by maximizing the number of RC3 calls at any given time while keeping Walsh code resources available for both new calls and hand-in traffic.
Abstract:
Compensation methods and apparatus are disclosed for mitigating non-linear distortion of high power amplifiers used in communication transmitters, based on the minimization of the symbol error, in particular, for communication systems transmitting data embedded in existing co-channel signals. To overcome the difficulty of constructing pre-distortion mapping from the symbol error, an adaptive algorithm is disclosed to update compensation parameters for pre-distortion mapping. Another method exploits a test signal interval in the co-channel signal. During a known constant co-channel signal, distortion is estimated as a complex number and used to construct compensation parameters. The latter is further expanded by employing the adaptive algorithm for the non-test signal intervals.
Abstract:
Iterative pre-conditioning of an electrical signal for supply to an amplifier, comprising: a first pre-conditioning iteration comprising limiting the amplitude of the electrical signal to produce a limited signal; generating a difference signal for subtracting the electrical signal from the limited signal; and generating an output signal by subtracting the difference signal from the limited signal; at least one further iteration comprising the steps of: Limiting the amplitude of the output signal of the previous iteration to produce a subsequent limited signal; generating a subsequent difference signal by subtracting the electrical signal from the subsequent limited signal; and generating an output signal by subtracting the subsequent difference signal from the subsequent limited signal.
Abstract:
A method and apparatus are provided for controlling transmit power with an estimated value of cubic metric (CM) and/or peak-to-average ratio (PAR). Preferably, the method is applied in determining a value for Maximum Power Reduction (MPR) for computing maximum-MPR or minimum-MPR, by estimating CM and/or PAR from signal parameters. The method of estimating CM and/or PAR is applicable to any multicode signal.
Abstract:
A wireless base station unit (100) monitors total transmission power, which is a sum of transmission power to all of mobile station terminals (200-203) connected for communication. When the total transmission power exceeds a first threshold value, which is a criterion for judging whether to reduce the transmission power or not, an upper limit value of the transmission power to the mobile station terminal at the lowest priority level is reduced by a prescribed quantity. When the total transmission power exceeds a second threshold value, which is larger than the first threshold value, communication connection with the mobile station terminal at the lowest priority level is cut.
Abstract:
A code multiplexing transmitting apparatus spread-spectrum modulates transmission data of a plurality of channels by spreading codes that differ from one another, combines the spread-spectrum signals of each of the channels and transmits the resultant spread-spectrum modulated signal. A spread-spectrum modulating unit for each channel includes a phase shifter for shifting, by a predetermined angle channel by channel, the phase of a position vector of the spread-spectrum modulated signal of each channel. As the result of such phase control, the phases of pilot signal portions of the spread-spectrum modulated signals of the respective channels are shifted relative to one another so that the peak values of the code-multiplexed signal can be suppressed.
Abstract:
A peak factor reduction unit that never allow peak factor reproduction even when interpolation is done in a succeeding stage. The unit detects a local maximum value of amplitude components from an input complex signal and supplies a complex signal that passes a band limiting baseband filter and an interpolation filter to a correction signal generation unit for generating a correction signal used for peak factor reduction and reduces a peak factor of the input complex signal with use of the correction signal generated from an interpolated complex signal.
Abstract:
The invention is a method for limiting the peak transmit power in a CDMA communication system. At least one of first and second high transmit power regions are separated into a plurality of high transmit power subregions. The high transmit power subregions of the plurality of high subregions are shifted by time offsets of differing durations to provide a plurality of time offset subregions. First and second low transmit power regions are also provided. At least one of the first and second low transmit power regions is also separated into a plurality of transmit power subregions and the low transmit power subregions are shifted by time offsets of differing time durations. The subregions can be time offset by a predetermined time duration or by a random time duration.
Abstract:
When a scrambler (54) performs IQ multiplexing of output signals from a spreader 52 and a distributor 53 in order to generate a complex signal (I signal and Q signal), amplitude coefficients βcc(I) and βcc(Q) are determined in accordance with signal powers on I axis and Q axis.
Abstract:
The SIR values of multi-paths obtained by a transmission path estimator are accumulated by an integrator at very cycle of a pilot signal, an average value for sufficiently long period is calculated by an average value calculator, a reference value is divided by a divider and applied as a control coefficient to multipliers, where it is multiplied by the SIR values, and the weight values of multi-paths are obtained. As for the despreaded data from a despreading unit, the timing of all data is synchronized in buffers, the data is complex multiplied by the above-mentioned weight values in multipliers, and RAKE is synthesized by adding in an adder, and outputted as final demodulated data to a soft decision unit.