Abstract:
This invention provides a scanner, which is capable of scanning document images based on a stepping control table and a method to generate such a table. This scanner includes a scanning module to scan a document and generates a responding image signal, a stepping motor to drive the scanning module or the document and a control device to control the operation of the scanning module and the stepping motor. This control device includes a stepping control table, which contains the stepping numbers for the stepping motor to drive the scanning module or the document. While scanning a document, this device will accurately control the stepping motor according to the stepping numbers relating to the locations of the lines to be scanned, and further move the scanning module or the document to a pre-defined position for a scanning task. A design like this will reduce errors in a scanning module's movement caused by the mechanical deviation.
Abstract:
A method and apparatus for reducing image unevenness due to light emission of a transfer element. Namely, when a printing speed is changed to 1/2n (n is a positive integer), a SLED head controller repeats a cycle to perform exposure control for one line and then stops the exposure control for the lines corresponding to 1/2n speed. For example, in the 1/2 speed (i.e., n=1), transfer and light emission driving are performed at an initially set maximum speed, and the cycle when the exposure control for one line is stopped after the one-line exposure control is repeated. The printing speed is changed on the basis of the type or kind of recording medium used.
Abstract:
An optical scanning device is provided with a light source, a scanning system, a light receiving unit having a plurality of light receiving elements arranged in a main scanning direction, a resonance amplifying system that amplifies the light receiving signals of the light receiving elements. A clock signal is generated based on the resonance amplified signals. Further, a delay signal is generated to wait for stabilization of the clock signal. A synchronizing signal is generated based on the clock signal and the delay signal.
Abstract:
In an image forming apparatus in which an exposure is conducted by scanning of a laser beam, the apparatus includes a photoreceptor for forming a latent image thereon; an exposure device having a rotary polygonal mirror for exposing the photoreceptor, wherein the laser beam is deflected and scanned onto the photoreceptor by rotating the rotary polygonal mirror; a controller for controlling a linear speed of the photoreceptor; and a braking device for decreasing forcibly a speed of rotation of the polygonal mirror. When the controller decreases the linear speed of the photoreceptor according to an image formation mode, the braking device decreases the speed of rotation of the polygonal mirror.
Abstract:
A central time-shared data processing system organized for character analysis and coupled to a number of remote document scanning stations each including a drum document feed, the drum being rotatable in small incremental steps, and means operable between steps for scanning the document along a path parallel to a line of characters on the document to produce data identifying graphic figures for analysis by the central processing system.
Abstract:
An optical encoder includes a light emitting unit that emits parallel light onto a plurality of marks that are arranged on an object such as a rotor or a belt, at a predetermined interval in a moving direction of the object, and a light receiving unit that receives light modulated by the marks. The parallel light is generated by a collimating lens.
Abstract:
A scanning device includes a scanning mechanism, a memory, a processing mechanism, and a scan rate adjustment mechanism. The scanning mechanism scans a media sheet having an image thereon at a variable scan rate, to yield raw data. The memory temporarily stores the raw data. The processing mechanism converts the raw data within the memory into processed data. The raw data is removed from the memory as the raw data is converted. The scan rate adjustment mechanism adjusts the variable scan rate, based on one or more of an amount of free space within the memory, a fill rate at which the raw data is filling the memory, and a removal rate at which the raw data is being removed from the memory, so that the memory does not become completely full.
Abstract:
An optical scanning unit used in an image forming apparatus having a latent image carrier includes a light emitter, a rotary deflector, an inclination adjustment unit, and a controller. The light emitter emits a light beam. The rotary deflector deflects and scans the light beam onto a surface of the latent image carrier. The inclination adjustment unit adjusts an inclination of a scan line corresponding to the light beam relative to a reference scan line on the latent image carrier. The controller changes at least one of a linear velocity of the latent image carrier and a rotation speed of the rotary deflector so as to change a ratio between the linear velocity of the latent image carrier and a scan speed of the light beam, and controls the inclination adjustment unit based on the ratio to keep the scan line from inclining relative to the reference scan line.
Abstract:
An image size compensating system of a multifunction printer includes a scanning unit to generate scan data obtained by scanning a reference document and a copy of the reference document, a system control unit to extract scan information on widths and lengths of the reference document and the copy from the scan data, and a printer engine to receive the scan information from the system control unit and to control a main motor controlling a length of a print image and a polygon motor controlling a width of the print image so that sizes of the reference document and the copy are identical to each other.
Abstract:
A film scanner performs a main-scan of a film by an imaging device and performs a sub-scan of the imaging device so as to enable scanning at any resolution using a simple configuration. The scanning mechanism, for the sub-scan of the film with respect to the imaging device, has a transport table for supporting the film held by a film holder and transporting it in a sub-scan direction and a transport mechanism for moving the transport table in the sub-scan direction. The source of the drive power of the transport mechanism is a scan motor (stepper motor) driven by a pulse signal output from a motor drive circuit. The motor drive circuit is configured to enable micro-stepping of the scan motor.