Abstract:
The present invention relates to chelating resins containing methyleneaminoethylsulfonic acid groups, a process for producing them and also their use for removing heavy metals or metals of value from aqueous solutions having a pH of
Abstract:
A device for dynamic filtration of a pharmaceutical product is provided. The device includes a resin configured to selectively retain one or more components from a mixture having the pharmaceutical product, where the resin is configured to be activated by a medium of the mixture. The device further includes at least one positioning material disposed adjacent to the resin, where the positioning material is configured to provide mechanical support to the resin to at least partially retain the resin in position. In certain embodiments, the device does not require conditioning immediately prior to filtration.
Abstract:
A polymer substrate for recombinant protein purification is provided. A process for purifying recombinant proteins is also provided. In general, the present invention is directed to a chelating composition which may be used in a self-supported purification medium for recombinant protein purification. In another embodiment, a process for removal of transition metals from environmental waste is also provided.
Abstract:
One embodiment of the invention comprises an ion exchange composition formed by reacting unsaturated carbon to carbon moieties pendant from derivatized ion binding cryptands with a support substrate under free radical activation conditions to form a covalent bond therebetween.In another embodiment, a cryptand ion exchange composition is made by covalently bonding unsaturated carbon to carbon moieties pendant from a derivatized ion binding cryptands with unsaturated carbon to carbon moieties pendant from a support substrate under free radical activation conditions to form covalent bond.
Abstract:
Compositions and methods for selectively binding metal ions from a source solution comprise using a polyhydroxypyridinone-containing ligand covalently bonded to a particulate solid support through a hydrophilic spacer of the formula SS-A-X-L (HOPO)n where SS is a particulate solid support such as silica or a polymeric bead, A is a covalent linkage mechanism, X is a hydrophilic spacer grouping, L is a ligand carrier, HOPO is a hydroxypyridinone appropriately spaced on the ligand carrier to provide a minimum of six functional coordination metal binding sites, and n is an integer of 3 to 6 with the proviso that when SS is a particulate organic polymer, A-X may be combined as a single covalent linkage. The separation is accomplished by passing a source solution containing the ions to be separated through a column containing the particulate composition, causing the selected ions to be complexed to the HOPO ligands and subsequently removing the selected ions from the column by passing an aqueous receiving solution through the column and quantitatively stripping the selected ions from the HOPO ligand.
Abstract:
A polyfunctional amine, such as cyclam, substituted with 4-(N,N-dimethylao) benzonitrile, exhibits triple fluorescence and complexes with metal ions. The complexation of metal ions with the fluorophore changes the triple fluorescence characteristics of the fluorophore. Thus, this substituted polyfunctional amine provides an effective indicator for the qualitative and quantitative detection of metals.
Abstract:
An insoluble, only slight swellable, polymer having modified amino groups, which contain units of the formulae: ##STR1## or both (I) and (II), wherein R.sup.1, R.sup.2, R.sup.3 and Me are as defined herein.
Abstract:
A liquid chromatography apparatus with stationary and mobile phase temperature controls suitable for polynucleotide separations by MIPC and DMIPC processes. The apparatus includes heater means with a temperature control system; a matched ion polynucleotide chromatography separation column having an inlet end; a coil of capillary tubing having an inlet end and an outlet end. The outlet end of the capillary tubing is connected with the inlet end of the separation column. The inlet end of the capillary tubing comprising means for receiving process liquid, the tubing having a length of from 6 to 400 cm having a linear tubing length of heating means. The separation column and the coil of capillary tubing are enclosed in the heater means. The capillary tubing preferably is PEEK or titanium. The heater means can be an air batch oven. Preferably, it is a heat-conducting block having a first heat transfer surface, a separation column receptacle, and a capillary coil receptacle. A separation column is positioned within the separation column receptacle in heat conducting relationship with an inner wall thereof. A coil of capillary tubing is positioned in the capillary coil receptacle, the outer extremities of the coil being in heat conducting relationship with an inner wall of the capillary coil receptacle. Optimally, the heating means is a Peltier heating and cooling unit in heat conducting relationship with a heat transfer surface of the heating block.