Abstract:
Method for thermally spraying a heater onto a substrate, comprising providing a metallic material having a core and an insulator therein and thermally spraying the metallic material and the insulator onto a substrate to form a heater. Method of fabricating a thermally sprayed gas heater, comprising providing a gas flow apparatus that propels a gas through a housing; thermally spraying a material to form a resistive heating layer; bonding the resistive heating layer to a surface of the apparatus, the heating layer being positioned to heat the gas flow in the housing. Method of fabricating a heater system of a turbulent gas flow duct, comprising providing a duct having a gas flow channel, the channel having a shaped surface providing a turbulent gas flow therein; thermally spraying a material to form a resistive heating layer; positioning the resistive heating layer to heat the gas flow in the channel.
Abstract:
The present invention is directed to a method for protecting metal surfaces in oil & gas exploration and production, refinery and petrochemical process applications subject to solid particulate erosion at temperatures of up to 1000° C. The method includes the step of providing the metal surfaces in such applications with a hot erosion resistant cermet lining or insert, wherein the cermet lining or insert includes a) about 30 to about 95 vol % of a ceramic phase, and b) a metal binder phase, wherein the cermet lining or insert has a HEAT erosion resistance index of at least 5.0 and a K1C fracture toughness of at least 7.0 MPa-m1/2. The metal surfaces may also be provided with a hot erosion resistant cermet coating having a HEAT erosion resistance index of at least 5.0. Advantages provided by the method include, inter alia, outstanding high temperature erosion and corrosion resistance in combination with outstanding fracture toughness, as well as outstanding thermal expansion compatibility to the base metal of process units. The method finds particular application for protecting process vessels, transfer lines and process piping, heat exchangers, cyclones, slide valve gates and guides, feed nozzles, aeration nozzles, thermo wells, valve bodies, internal risers, deflection shields, sand screen, and oil sand mining equipment.
Abstract:
The present invention provides methods for producing a crack-free abradable coating with enhanced adhesion. The methods include the steps of providing a substrate and applying an abradable material to the substrate, either directly or indirectly via one or more additional layers. A critical coating temperature of the abradable material is determined that ensures that the thermal stress level in the abradable material is lower than the tensile strength of the abradable material. The temperature of the abradable material is held at a constant temperature below the critical coating temperature throughout the step of applying the abradable material to the substrate.
Abstract:
This invention relates to a percussion drill bit head for a percussion drilling apparatus, the drill bit head comprising a working surface and a plurality of super-hard buttons protruding from the working surface, the working surface having a hard area that is free of buttons and has Rockwell C hardness of at least 60 HRc. The invention further relates to a method of manufacturing a percussion drill bit head comprising a working surface and a plurality of buttons and a percussion drill bit assembly comprising a drill bit head according to the invention.
Abstract:
A plain bearing is provided which has an Sn-and-Si-rich layer formed of an Al alloy containing Sn and Si, and a base material which does not contain Sn. The Sn-and-Si-rich layer have the sliding surface having an area ratio of Sn phase grains in a range of 6 to 40% and that of Si phase grains in a range of 5 to 25%.
Abstract:
Metal alloys having low electrical and thermal conductivity including relatively large fractions of P-Group element additions. The P-Group elements may be selected from the group including phosphorous, carbon, boron, and silicon. The resultant alloys do not exhibit significantly increased brittleness, and are applied as a coating that provides a metallic thermal barrier coating.
Abstract:
An apparatus and method for thermal spraying a metal coating on a substrate is accomplished with a modified pulsejet and optionally an ejector to assist in preventing oxidation. Metal such as Aluminum or Magnesium may be used. A pulsejet is first initiated by applying fuel, air, and a spark. Metal is inserted continuously in a high volume of metal into a combustion chamber of the pulsejet. The combustion is thereafter controlled resonantly at high frequency and the metal is heated to a molten state. The metal is then transported from the combustion chamber into a tail pipe of said pulsejet and is expelled therefrom at high velocity and deposited on a target substrate.
Abstract:
A ceramic thermal barrier coating (8) for coating the surface (7) of a component (1) of a nickel-based superalloy, and an adhesive coating optionally applied thereon (6), preferably a gas turbine component, includes zirconium oxide (ZrO2) stabilized by yttrium oxide (Y2O3) and production-related impurities, as well as at least one high-temperature and oxidation resistant intermetallic compound, for example NiAl, YRh, ErIr, the volume fraction of which decreases continuously or in stages as the distance from the surface (7) of the component (1)/the adhesive coating (6) increases. Advantageously, a less steep stress gradient is produced by gradually varying the composition of the thermal barrier coating (8). This leads to an increased expansion tolerance of the thermal barrier coating (8) and thus, on the one hand, to an increased lifetime under thermal loading (no flaking) and, on the other hand, the possibility of applying thicker thermal barrier coatings (8), and there for of using the coated components (1) at higher temperatures.
Abstract:
A method for making a densified ceramic layer comprises plasma spraying a layer of the ceramic onto a substrate; spin-coating the plasma-sprayed layer with a sol, and firing the spin-coated ceramic layer. The method may be applied in producing layers of yttria stabilized zirconia (YSZ) having application as electrolyte layers for solid oxide fuel cells or thermal barrier coatings, for example. The firing may be performed at a relatively low temperature such as 650° C. or even below. A method for enhancing electrochemical properties of an interface involving a layer of YSZ or other ceramic comprises spin-coating or otherwise impregnating the layer with a sol and heating the spin-coated layer.
Abstract:
A method for producing a spray coating, in particular an abradable spray coating for components of a turbine engine by a thermal spraying process, is disclosed. An online process monitoring system, especially a PFI unit and/or a spectrometer unit, is provided for monitoring and regulating the thermal spraying process, where at least one process parameter is calculated according to the formula pB1=PB2+HB1−HB2−(Δx·y)/z+n, where pB1 is the process parameter of the component that is to be coated, pB2 is the process parameter of a previous coating, HB1 is the hardness of the spray coating that is to be coated, HB2 is the hardness of the previous spray coating, Δx is a process variable of the online process monitoring system, and y, z and n are constant parameters.