Abstract:
A scanning lithography tool exposes a medium in a raster scan. The raster scan is a multi-pass scan in which the shape of the beam, while fixed for any one pass, is altered between passes. Thus, certain pixels are exposed in one or more scans using a Gaussian (round) beam while other pixels are exposed in separate scans using, for instance, a shaped (e.g., square or rectangular) shaped beam. Beam shape here refers to the cross-sectional shape of the beam as incident on the medium. This process, especially when the shaped beam is applied at the corners and slanted edges of a feature being exposed, has been found to substantially reduce the problem of edge blur otherwise typical of raster scan lithography. This process is applicable to both electron beam and laser beam raster scanning lithography.
Abstract:
A converter for lithography which generates signals that control a shaping of an electron (or other energy) beam and which includes a translator that translates shape data into shape and position signals, and translates duration information into a duration signal. The converter also includes a retrograde scan circuit coupled to the translator that provides a retrograde signal that adjusts the position signal to offset a raster scan movement of the beam. The shape signals control the shaping of the beam, the position signal specifies a position of the beam for writing the shape on a substrate, and the duration signal specifies a duration of exposure of the beam on the substrate.
Abstract:
This invention provides an electron beam projection exposure apparatus which can obtain a large irradiation width while maintaining an electron beam intensity required for exposure. An electron beam emitted by an electron gun (1) is transmitted through a condenser lens (2) and field lens (3), and illuminates a mask (4). The electron beam transmitted through the mask (4) is imaged and irradiated onto a wafer (7) via reduction projection lenses (5, 6), thus forming a pattern on the mask (4) on the wafer (7) by exposure. The electron gun (1) has an electron source, an electron emission surface of which has a circularly recessed central portion, and a ring-shaped electron beam emitted by the peripheral portion of the electron emission surface is used in exposure.
Abstract:
A method of exposing a wafer to a charged-particle beam by directing to the wafer the charged-particle beam deflected by a deflector includes the steps of arranging a plurality of first marks at different heights, focusing the charged-particle beam on each of the first marks by using a focus coil provided above the deflector, obtaining a focus distance for each of the first marks, obtaining deflection-efficiency-correction coefficients for each of the first marks, and using linear functions of the focus distance for approximating the deflection-efficiency-correction coefficients to obtain the deflection-efficiency-correction coefficients for an arbitrary value of the focus distance. A device for carrying out the method is also set forth.
Abstract:
It is an object of the present invention to reduce a number of deflection awaiting and a connection error between shots by scanning and exposing a formed beam having a large area. To achieve the object, a continuous scanning deflector and a scan limiter are added to a variable forming type electron beam column and the drawing is performed such that a state in which the electron beam is limited by the scan limiter is continuous to a state in which the electron beam is irradiated on a face of a sample. According to this structure, the number of deflection awaiting and the connection error between shots are reduced and further, a high-speed and highly accurate drawing of a 45° slanted figure is made possible.