Abstract:
A mandrel assembly has a hollow main tube and two annular sleeves, wherein an inner diameter of the two annular sleeves is larger than an outer diameter of the two main tube ends. The two annular sleeves are sleeved respectively on the two main tube ends, which can be easily disengaged from the mandrel assembly when applied with an external force.
Abstract:
A flash memory storage device, a controller thereof, and a data programming method are provided. The flash memory storage device has a flash memory comprising a plurality of physical blocks, each physical block includes a plurality of physical addresses, and the physical addresses comprises at least one fast physical address and at least one slow physical address. The method comprises at least grouping the physical blocks into a data area and a spare area; setting a predetermined block number; obtaining m physical blocks from the spare area, receiving a write command comprising a write data and a logical address, determining a logical address range of a buffer according to the logical address and the predetermined block number. When all logical addresses to be programmed with the write data are within the logical address range of the buffer, using a fast mode to program the data into the m physical blocks.
Abstract:
Systems and methods of fabricating Wafer Level Chip Scale Packaging (WLCSP) devices with transistors having source, drain and gate contacts on one side of the transistor while still having excellent electrical performance with low drain-to-source resistance RDS(on) include using a two-metal drain contact technique. The RDS(on) is further improved by using a through-silicon-via (TSV) technique to form a drain contact or by using a copper layer closely connected to the drain drift.
Abstract:
A block management method for managing blocks of a flash memory storage device is provided. The flash memory storage device includes a flash memory controller. The block management method includes the following steps. At least a part of the blocks is grouped into a first partition and a second partition. Whether an authentication code exists is determined. When the authentication code exists, the blocks belonging to the first partition are provided for a host system to access, so the host system displays the first partition and hides the second partition. An authentication information is received from the host system. Whether the authentication information and the authentication code are identical is authenticated. When the authentication information and the authentication code are identical, the blocks belonging to the second partition are provided for the host system to access, so the host system displays the second partition and hides the first partition.
Abstract:
Disclosed are semiconductor die structures that enable a die having a vertical power device to be packaged in a wafer-level chip scale package where the current-conducting terminals are present at one surface of the die, and where the device has very low on-state resistance. In an exemplary embodiment, a trench and an aperture are formed in a backside of a die, with the aperture contacting a conductive region at the top surface of the die. A conductive layer and/or a conductive body may be disposed on the trench and aperture to electrically couple the backside current-conducting electrode of the device to the conductive region. Also disclosed are packages and systems using a die with a die structure according to the invention, and methods of making dice with a die structure according to the invention.
Abstract:
A semiconductor package includes a semiconductor device 30 and a molded upper heat sink 10. The heat sink has an interior surface 16 that faces the semiconductor device and an exterior surface 15 that is at least partially exposed to the ambient environment of the packaged device. An annular planar base 11 surrounds a raised or protruding central region 12. That region is supported above the plane of the base 11 by four sloped walls 13.1-13.4. The walls slope at an acute angle with respect to the planar annular base and incline toward the center of the upper heat sink 10. Around the outer perimeter of the annular base 11 are four support arms 18.1-18.4. The support arms are disposed at an obtuse angle with respect to the interior surface 16 of the planar annular base 11.
Abstract:
Semiconductor die packages are disclosed. An exemplary semiconductor die package includes a premolded substrate. The premolded substrate can have a semiconductor die attached to it, and an encapsulating material may be disposed over the semiconductor die.
Abstract:
Semiconductor packages comprising a plurality of lead fingers containing a lead intrusion at the edge of the lead fingers are described. The semiconductor packages comprise an integrated circuit chip that is connected to a die pad and is electrically connected to multiple lead fingers. One or more of the lead fingers may have a lead intrusion disposed on the external exposed lower surface of the lead finger. The lead intrusion may have a height that is about ⅕ to about ½ the height of a lead finger, a width that is about ⅕ to about 1/2 the width of a lead finger, and a depth that is about ¼ to about ¾ the length of the externally exposed lower surface of a lead finger. The lead intrusion increases the area on the lead finger that contacts a bond material, such as solder, and therefore increase the strength of the joint between the semiconductor package and an external surface to which the lead finger is connected (i.e., a PCB). The lead intrusion allows out gassing during reflow of the bond material which may reduce voiding. The lead intrusion can also increase bond joint reliability by providing longer crack propagation length.
Abstract:
This invention relates to a device and method for optical nanoindentation measurement, according to which respective measurement results are obtained by having an indenter tip apply load to a fixed portion of a thin film, having an indenter tip apply load to a non-fixed portion of a thin film, and having a vibrating component transmit the dynamic properties of the vibration to the thin film. By combining the above measurement results in calculations, the Young's modulus, the Poisson's ratio, and the density of the thin film can be obtained.
Abstract:
Semiconductor die packages are disclosed. An exemplary semiconductor die package includes a premolded substrate. The premolded substrate can have a semiconductor die attached to it, and an encapsulating material may be disposed over the semiconductor die.