Abstract:
In the present invention, a nanoporous membrane having a columnar structure is manufactured through a deposition technology used in a semiconductor process, and the size of a nanopore is adjusted by etching the lower surface of the manufactured nanoporous membrane or using a seed layer and a nanobead layer so that scaling up is available at a lowered process temperature and the size of the nanopore can be easily adjusted when manufacturing the nanoporous membrane having a columnar structure.
Abstract:
Disclosed is a laser apparatus of amplifying a laser pulse output using an anisotropic laser crystal through chirped pulse amplification. The laser apparatus includes a laser resonator. The laser resonator includes a plurality of anisotropic laser crystals, generates a shorter femtosecond pulse by widening a spectrum bandwidth through a combination of different gain spectrum distributions using the anisotropic laser crystals, and allows a laser beam to travel in axial directions with different thermal characteristics of the anisotropic layer crystals in order to reduce a thermal effect.
Abstract:
The present invention relates to a portable digital reader for reading an analysis target chip including a plurality of test areas. The reader comprises: a light emitting section having light emitting elements for radiating light; an integral optical splitter for uniformly distributing the light from the light emitting section to each test area of the analysis target chip; a light receiving section for receiving light reflected from each test area so as to convert the same into electric signals; and a measuring section for measuring concentration according to the electric signals obtained from the light receiving section. Therefore, it is possible to prevent the generation of errors in signal measurement due to optical distribution failure by assembling branch sections of the optical splitter under the control of the number of the branch sections according to the number of test items in a test strip.
Abstract:
A transformer including; a bobbin, a coil wound to the bobbin, a core inserted within the bobbin and a soldering pin disposed connected to the bobbin, wherein the soldering pin has at least one first hole.
Abstract:
Provided is a method of manufacturing a hollow microneedle structure. The method includes forming an injection mold having a through hole, filling the injection mold with a photoresist formed of a viscous material, and extruding the photoresist from the injection mold through the through hole, solidifying the extruded photoresist to form a needle-type photoresist structure, forming a seed layer on the surface of the photoresist structure, forming a metal plated layer on the seed layer, inclining an end tip of the photoresist structure having the metal plated layer, and removing the photoresist from the metal plated layer to form a hollow. Thus, the hollow microneedle structure can be manufactured to have such diameter, length, hardness, and inclination angle as to minimize pain. The hollow microneedle structure can be combined with an apparatus for detecting a biomaterial or injecting cosmetic substances or medicines, and variously applied.
Abstract:
Provided are a biochip and a biomaterial detection apparatus. The biochip includes a substrate, a metal layer, and a dielectric layer. The substrate includes a surface having a plurality of acute parts which are formed by first and second inclined planes. The metal layer is formed on at least one of the first and second inclined planes. The dielectric layer is formed on the metal layer, and capture molecules specifically binding to target molecules which are marked with a fluorescent substance are immobilized to a surface of the dielectric layer.
Abstract:
Provided is a microfluidic control apparatus that includes at least one control means and a microfluidic control chip. When the microfluidic control chip is loaded to the control means, a needle provided to the control means is inserted into a reaction solution storage chamber of the microfluidic control chip, in which the reaction solution storage chamber is sealed with a sealing tape. Thus, fluid connection is easily formed between the microfluidic control chip and the control means without leakage.
Abstract:
Provided is a microfluidic device. The microfluidic device includes a sample storage chamber storing sample fluid therein, a detection chamber connected to the sample storage chamber and detecting a specific material of the sample fluid, a cleaning liquid storage chamber connected to the detection chamber and storing cleaning liquid therein, a plurality of fluid passages interconnecting the chambers, and a micropump transferring the cleaning liquid. The microfluidic device precisely inspects a sample fluid although a small amount of the sample fluid flows.
Abstract:
A microfluidic device for controlling the flow of a micro amount of fluid is provided. The microfluidic device is manufactured by binding a sensing substrate including a sensing electrode, an electrode interconnect, and a electrode pad, with a channel substrate including at least two fluid inlet ports, a chamber, and a channel, wherein a first fluid injected via one of the fluid inlet ports flows by natural capillary force, and a second fluid injected via another fluid inlet port is forced to flow by an external pump. The microfluidic device controls fluid flow and flow stoppage by a combination of natural capillary flow and an externally applied pressure as a result of the action of a pump.