Abstract:
A method of manufacturing a plurality of neural probes from a silicon wafer in which after neural probes are formed on one side of a silicon wafer, the other side of the silicon wafter is subject to a dicing process that separates and adjusts the thickness of the neural probes.
Abstract:
An implantable microneedle and a manufacturing method therefor is disclosed. The implantable microneedle includes a coating layer for covering at least one part of the surface of a tip part of the microneedle. When exposed to moisture, the coating layer can be separated from the tip part of the microneedle and thus be implanted.
Abstract:
The present invention provides an implantable microneedle and a manufacturing method therefor. An implantable microneedle according to the present invention comprises a coating layer for covering at least one part of the surface of a tip part of the microneedle. When exposed to moisture, the coating layer can be separated from the tip part of the microneedle and thus be implanted.
Abstract:
An object of the present invention is to provide an anti-adhesive/anti-clogging and/or color marked/tinted micro-capillary tube (microtube), microneedle, or micropipette. Typically, the color/tint will be selected such that the tip of the microneedle or micropipette is in contrast (e.g., visually) to the biological material. The tint/color may be selected to contrast the stained biological material. In some aspects, the color mark comprises nanoparticles that are modified by adding a non-adhesive coating/material that minimizes protein adhesion/adsorption. The microtubes and/or micropipettes may be treated with an anti-clogging reagent and an anti-adhesive reagent to prevent or reduce clogging and adhesion of the micropipette or microneedle to biological materials. The microtubes and/or micropipettes may be formed using additive printing processes and additive manufacturing techniques or from micropipette and microneedle pullers.
Abstract:
Nanoneedles and nanoneedle arrays and methods of making nanoneedles are provided. The methods can include multilayer fabrication methods using a negative photoresist and/or a positive photoresist. The nanoneedle arrays include one or more nanoneedles attached to a surface of a substrate. The nanoneedle can have both a proximal opening and a distal opening, and an inner passageway connecting the proximal opening and the distal opening. The nanoneedle can have a functional coating. The nanoneedle can include iron, cobalt, nickel, gold, and oxides and alloys thereof. The nanoneedle arrays can be used for the administration and/or the extraction of agents from individual cells. In one or more aspects, the nanoneedles can be magnetic nanoneedles. An oscillating magnetic field applied to a magnetic nanoneedle can induce one or both of heating and vibration of the magnetic nanoneedle. The heating and/or vibration can cause a magnetic nanoneedle to penetrate the wall of a cell.
Abstract:
The present invention provides a microneedle, comprising a shaft of a monocrystalline material having at least three walls which are formed by a crystal plane of the monocrystalline material; and a tip connected to an end of the shaft comprising at least three walls which are formed by a crystal plane of the material. The material is preferably silicon. Two of the walls of the tip are formed by the same crystal planes as two walls of the shaft. These two walls are formed by a crystal plane. Preferably, three walls of the tip are formed by a crystal plane.
Abstract:
The present invention provides a system for manufacturing a therapeutic microneedle configured to regulate an air environment within a coating chamber for manufacturing a therapeutic microneedle by coating a microneedle with a coating liquid containing a drug, the system for manufacturing a therapeutic microneedle comprising an air compressor, a humidity regulator configured to regulate humidity of air supplied from the air compressor, and an air filter configured to eliminate microorganisms from air to be supplied to the inside of the coating chamber.
Abstract:
A method of producing projections on a patch including providing a mask on a substrate and etching the substrate using an etchant and a passivant to thereby control the etching process and form the projections, wherein the passivant does not include oxygen.
Abstract:
The present invention provides for transdermal delivery devices having microneedle arrays, as well as methods for their manufacture and use. In one embodiment, a transdermal delivery device is provided. The transdermal delivery device includes a polymer layer which has microneedles projecting from one of its surfaces. The microneedles are compositionally homogenous with the polymer base layer.
Abstract:
The invention discloses a method of manufacturing a microneedle including the steps of forming an island etching mask having thickness distribution on a substrate, and processing the substrate into a needle by taking advantage of a difference in etching rates between the etching mask and the substrate. The invention enables to readily control a point angle and height of the manufactured needle.