Abstract:
A coupler for coupling light between an optoelectronic element and an optical fiber. The coupler has a fiber stop that is made of a material that has an index of refraction that effectively matches the index of refraction of the optical fiber being coupled to the optoelectronic element. The fiber stop may be flat or rounded. It may be a discrete or molded part of the coupler assembly. The end of the fiber being stopped may be flat or rounded.
Abstract:
An optical device for improving conduction and reflectivity and minimizing absorption. The optical device includes a first mirror comprising a first plurality of mirror periods designed to reflect an optical field at a predetermined wavelength, where the optical field has peaks and nulls. Each of the plurality of mirror periods includes a first layer of having a high carrier mobility, a second layer having lower carrier mobility, and a first compositional ramp between the first and second layers. The thicknesses of the first and second layers for at least a portion of the first plurality of mirror periods are established such that the nulls of the optical field occur within the first layer and not within the compositional ramp. At least the portion of the first layers within the first plurality of mirror periods include elevated doping concentrations at locations of the nulls of the optical field.
Abstract:
Improved slope efficiency in a VCSEL can be accomplished by selecting particular mirror layer compositions and/or mirror layer configurations that minimize increased reflectivity in the top mirror and/or maximize increased reflectivity of the bottom mirror with increasing temperature. Improved reflectivity of the bottom mirror compared to the top mirror over a desired operating temperature range can be facilitated by (i) selecting mirror pairs for the bottom and/or top mirror that gives the bottom mirror pairs a greater increase in contrast ratio with increasing temperature compared to the top-mirror pairs, and/or (ii) including fewer mirror pairs in the bottom mirror than the number of mirror pairs that would give optimal reflectivity.
Abstract:
Improved slope efficiency in a VCSEL can be accomplished by selecting particular mirror layer compositions and/or mirror layer configurations that minimize increased reflectivity in the top mirror and/or maximize increased reflectivity of the bottom mirror with increasing temperature. Improved reflectivity of the bottom mirror compared to the top mirror over a desired operating temperature range can be facilitated by (i) selecting mirror pairs for the bottom and/or top mirror that gives the bottom mirror pairs a greater increase in contrast ratio with increasing temperature compared to the top-mirror pairs, and/or (ii) including fewer mirror pairs in the bottom mirror than the number of mirror pairs that would give optimal reflectivity.
Abstract:
A system and method for aligning optical components based on coupled optical power and encircled flux is described. In one embodiment of the invention, coupled power and encircled flux is measured corresponding to multiple locations of a first optical component relative to a second optical element. The measured coupled power and encircled flux values are analyzed and an appropriate location of the first optical component relative to the second optical component is selected.
Abstract:
Digital optical networks for communication between digital consumer electronic devices are disclosed. A digital optical network can include an input interface configured to electrically couple to a DVI or HDMI receptacle of a source device. The input interface includes an optical transmitter for converting a TMDS signal into an optical signal. An input optical fiber optically coupled to the optical transmitter receives the optical signal. A coupler is coupled to the input optical fiber and couples the optical signal with at least one of multiple output optical fibers coupled to the coupler. Output interfaces each include an optical transmitter for converting the optical signal back into the electrical TMDS signal. The output interfaces are configured to electrically couple the TMDS signals with respective DVI or HDMI receptacles of DVI or HDMI sink devices.
Abstract:
The present invention discloses systems and methods for defining a coupling region or regions for use with optical systems. An embodiment of the coupling region represents a region in which an optical parameter meets or exceeds a selected threshold value. Embodiments of the coupling region may be used for the alignment, characterization, qualification, or design of optical elements or optical assemblies.
Abstract:
A photo-imaged stress management layer for a semiconductor device is described. The stress management layer is located on an outer surface of a semiconductor device and may be patterned to address certain stress compensation requirements of the semiconductor device. The stress management layer may be manufactured onto the semiconductor device using a photolithographic procedure that allows both simple and complex patterns to be realized.
Abstract:
Optoelectronic device including integrated light emitting device and photodiode. The optoelectronic device includes a light emitting, device such as a vertical cavity surface emitting laser (VCSEL) or resonant cavity light emitting diode (RCLED). A photodiode is also included in the optoelectronic device. Between the light emitting device and the photodiode is a transition region. At least part of the transition region is shorted. A metal contact provides a contact to both the light emitting device and the photodiode.
Abstract:
Methods of conducting wafer level burn-in (WLBI) of semiconductor devices are presented wherein systems are provided having at least two electrodes (210, 215). Electrical bias (920) and/or thermal power (925) is applied on each side of a wafer (100) having back and front electrical contacts for semiconductor devices borne by the wafer. A pliable conductive layer (910) is described for supplying pins on the device side of a wafer with electrical contact and/or also for providing protection to the wafer from mechanical pressure being applied to its surfaces. Use of a cooling system (950) is also described for enabling the application of a uniform temperature to a wafer undergoing burn-in. Wafer level burn-in is performed by applying electrical and physical contact (915) using an upper contact plate to individual contacts for the semiconductor devices; applying electrical and physical contact using a lower contact plate (910) to a substrate surface of said semiconductor wafer; providing electrical power (920) to said semiconductor devices through said upper and lower second contact plates from a power source coupled to said upper and lower contacts plates; monitoring and controlling electrical power (935) to said semiconductor devices for a period in accordance with a specified burn-in criteria; removing electrical power at completion of said period (955); and removing electrical and physical contact to said semiconductor wafer (965).