Abstract:
An anesthetic and therapeutic composition for use in aquaculture includes an essential oil preferably thyme oil that is mixed with ethanol in an amount of one part essential oil preferably thyme oil to five parts ethanol. The essential oil ethanol mixture is then dispersed in water preferably seawater to provide 10 to 60 ppm of essential oil. The oxygen in the composition is between about 5.00 and 6.5 mg/L and in a preferred embodiment is enhanced by an agar stabilizer. The invention also contemplates treating fish such as sheam and sobaity and shrimp and seahorse to reduce stress and maintain a temperature of about 20°-27° C.
Abstract:
The apparatus for measuring performance of a suspension for cooling a computer processing unit is a measurement and testing tool allowing for the fabrication of new suspensions, and measuring and testing their short-term and long-term thermal performance in real time on any liquid-cooled computer processing unit. The suspension is prepared in a sample receiving reservoir and pumped across the unit, and then input to an air-cooled heat exchanger for recirculation back to the sample receiving reservoir. Temperatures of the working fluid are measured between the sample receiving reservoir and the computer processing unit, between the unit and the heat exchanger, and after output from the heat exchanger. Pressure differentials of the working fluid is measured across the computer processing unit and across the heat exchanger.
Abstract:
The bioorganic soil conditioner includes biochar derived from plant waste and a mix of chemicals including sulfonated naphthalene formaldehyde, urea-formaldehyde and polyvinyl alcohol. The bioorganic soil conditioner is made by infusing biochar from lignin-rich plant waste with the mix of chemicals. The bioorganic soil conditioner improves soil aggregation and moisture and nutrient retention capacity. Thus, the bioorganic soil conditioner may be added to soil to improve crop production and stabilize soil, for example, in conditions of high wind or desertification.
Abstract:
The method for damping ocean waves in a coastal area uses a barrier having a plurality of vertical walls positioned parallel to one another, each wall defining a plurality of horizontally extending slots. The dimensions of the slots, or overall porosity of the wall, and the number of walls positioned in parallel may be varied to provide different levels of damping. Accordingly, a desired amount of damping may be provided through varying the porosity of the walls and the number of walls. The method defines a transmission coefficient equal to the wave height of waves transmitted from the barrier divided by the wave height of waves incident on the barrier, and collects experimental data normalized with the significant wave height and the wavelength at the peak period for the depth of water to select the combination of wall number and porosity to produce the desired damping.
Abstract:
The device and method for measuring the effect of soiling on a photovoltaic device includes a device in which a photovoltaic device (reference solar cell, solar cells, PV module, etc.) may be shifted between partially and fully enclosed compartments in quick succession for measurements of the same device (1) when directly exposed to illumination or solar radiation; (2) when placed under a glass or transparent cover maintained cleared or cleaned of soil; and (3) when placed under glass or transparent cover left exposed to natural outdoor soiling, or attenuated using simulated soil that is not periodically cleaned. The measurements may be of short circuit current (Isc), maximum power (Pmax), or other electrical parameter conventionally used to evaluate performance of the photovoltaic device. A soiling ratio calculated as: SR Pmax = 1 - P max 2 - P max 3 P max 1 or calculated as: SR Isc = 1 - I sc 2 - I sc 3 I sc 1 may be used to compare or monitor performance of the photovoltaic device between measurement cycles.
Abstract:
The method of making a nanocomposite polyelectrolyte membrane is a process for forming membranes for use in hydrogen and methanol fuel cell applications, for example. A hydrophobic polymer, such as polypropylene, is blended with a nanofiller, such halloysite nanotubes (HNTs) or propylene-grafted maleic anhydride nano-layered silica (Ma-Si), to form a dry mix, which is then pelletized for extrusion in a twin-screw extruder to form a thin film nanocomposite. The thin film nanocomposite is then annealed and cold stretched at room temperature. The cold stretching is followed by stretching at a temperature ranging from approximately 110° C. to approximately 140° C. The nanocomposite is then heat set to form the nanocomposite polyelectrolyte membrane. The nanocomposite polyelectrolyte membrane may then be further plasma etched and impregnated with a sulfonated polymer, such as sulfonated melamine formaldehyde, a polycarboxylate superplasticizer or perfluorosulfonic acid.
Abstract:
The catalyst for mild-hydrocracking of residual oil includes a porous alumina support a plurality of transition metals impregnated on the alumina support. The support has a specific surface area greater than 150 m2/g, a total pore volume ranging from about 0.25 ml/g to about 1.5 ml/g, about 20% of the pores having a diameter greater than 150 nm, about 70% of the pores having a diameter ranging from about 2 nm to about 150 nm, and about 10% of the pores having a diameter less than 2 nm. The plurality of transition metals include one Group VIII element and one or more Group VI elements.
Abstract:
A method for synthesis of MgH2/Ni nanocomposites includes balancing magnesium (Mg) powder in a ball milling container with helium (He) gas atmosphere; adding a plurality of nickel (Ni) milling balls to the container; introducing hydrogen (H2) gas to the container to form a MgH2 powder; milling the MgH2 powder using the Ni-balls as milling media to provide MgH2/Ni nanocomposites. The milling can be high-energy ball milling, e.g., under 50 bar of hydrogen gas atmosphere. The high-energy ball milling can be reactive ball milling (RBM). The method can be used to attach Ni to MgH2 powders to enhance the kinetics of hydrogenation/dehydrogenation of MgH2.
Abstract:
The combination multi-effect distillation and multi-stage flash evaporation system integrates a multi-stage flash (MSF) evaporation system with a multi-effect distillation (MED) system such that the flashing temperature range of the MSF process is shifted upward on the temperature scale, while the MED distillation process operates in the lower temperature range. The multi-stage flash evaporation system includes a plurality of flash evaporation/condensation stages, such that the multi-stage flash evaporation system receives a volume of seawater or brine from an external source and produces distilled water. The multi-effect distillation system includes a plurality of condensation/evaporation effects, such that the multi-effect distillation system receives concentrated brine from the multi-stage flash desalination system and produces distilled water.
Abstract:
The system for testing stress corrosion cracking (SCC) includes an autoclave having at least one heating element selectively actuated to heat the interior portion of the autoclave, the autoclave being configured for receiving a liquid and/or gas and for forming a corrosive fluid. The system also includes a circulation assembly having a flow line and a test section line. A plurality of test sections is positioned in series along the test section line and configured for receiving the corrosive fluid via the test section line once the required temperature is reached to expose the specimens directly to the corrosive fluid, the fluid flowing through a section of the flow line parallel to the test section line until the required temperature is reached. The circulation assembly includes a circulating pump, a flowmeter positioned along the flow line, and a pressure assembly mounted on the autoclave.