Abstract:
An M×N matrix microfluidic device for performing a matrix of reactions, the device having a plurality of reaction cells in communication with one of either a sample inlet or a reagent inlet through a via formed within an elastomeric block of the device. Methods provided include a method for forming vias in parallel in an elastomeric layer of an elastomeric block of a microfluidic device, the method comprising using patterned photoresist masks and etching reagents to etch away regions or portions of an elastomeric layer of the elastomeric block.
Abstract:
A method of fabricating an elastomeric structure, comprising: forming a first elastomeric layer on top of a first micromachined mold, the first micromachined mold having a first raised protrusion which forms a first recess extending along a bottom surface of the first elastomeric layer; forming a second elastomeric layer on top of a second micromachined mold, the second micromachined mold having a second raised protrusion which forms a second recess extending along a bottom surface of the second elastomeric layer; bonding the bottom surface of the second elastomeric layer onto a top surface of the first elastomeric layer such that a control channel forms in the second recess between the first and second elastomeric layers; and positioning the first elastomeric layer on top of a planar substrate such that a flow channel forms in the first recess between the first elastomeric layer and the planar substrate.
Abstract:
An M.times.N matrix microfluidic device for performing a matrix of reactions, the device having a plurality of reaction cells in communication with one of either a sample inlet or a reagent inlet through a via formed within an elastomeric block of the device. Methods provided include a method for forming vias in parallel in an elastomeric layer of an elastomeric block of a microfluidic device, the method comprising using patterned photoresist masks and etching reagents to etch away regions or portions of an elastomeric layer of the elastomeric block.
Abstract:
The present invention provides assay methods that increase the number of samples and/or target nucleic acids that can be analyzed in a single assay.
Abstract:
Multilevel microfluidic devices include a control line that can simultaneously actuate valves for both sample and reagent lines. Microfluidic devices are configured to contain a first reagent in a first chamber and a second reagent in a second chamber, where either or both of the first and second reagents are contained at a desired or selected pressure. Operation of a microfluidic device includes transmitting second reagent from the second chamber to the first chamber, for mixing or contact with the first reagent. Microfluidic device features such as channels, valves, chambers, can be at least partially contained, embedded, or formed by or within one or more layers or levels of an elastomeric block.
Abstract:
An M.times.N matrix microfluidic device for performing a matrix of reactions, the device having a plurality of reaction cells in communication with one of either a sample inlet or a reagent inlet through a via formed within an elastomeric block of the device. Methods provided include a method for forming vias in parallel in an elastomeric layer of an elastomeric block of a microfluidic device, the method comprising using patterned photoresist masks and etching reagents to etch away regions or portions of an elastomeric layer of the elastomeric block.
Abstract:
A variety of elastomeric-based microfluidic devices and methods for using and manufacturing such devices are provided. Certain of the devices have arrays of reaction sites to facilitate high throughput analyses. Some devices also include reaction sites located at the end of blind channels at which reagents have been previously deposited during manufacture. The reagents become suspended once sample is introduced into the reaction site. The devices can be utilized with a variety of heating devices and thus can be used in a variety of analyses requiring temperature control, including thermocycling applications such as nucleic acid amplification reactions, genotyping and gene expression analyses.
Abstract:
A valve structure comprises an elastomeric block formed with first and second microfabricated recesses separated by a membrane portion of the elastomeric block. The valve is actuated by positioning a compliant electrode on a first side of the first recess proximate to and in physical communication with the membrane. Where the valve is to be electrostatically actuated, a second electrode is positioned on a second side of the first recess opposite the first side. Application of a potential difference across the electrodes causes the compliant electrode and the membrane to be attracted into the flow channel. Where the valve is to be electrostrictively actuated, a second electrode is positioned on the same side of the recess as the compliant electrode. Application of a potential difference across the electrodes causes the electrodes to be attracted such that elastomer membrane portion material between them is compressed and bows into the flow channel. Either of the electrostrictively or the electrostatically-actuated valve structures may include an electrically-conducting fluid in the second recess to serve as the compliant electrode.
Abstract:
A method of fabricating an elastomeric structure, comprising: forming a first elastomeric layer on top of a first micromachined mold, the first micromachined mold having a first raised protrusion which forms a first recess extending along a bottom surface of the first elastomeric layer; forming a second elastomeric layer on top of a second micromachined mold, the second micromachined mold having a second raised protrusion which forms a second recess extending along a bottom surface of the second elastomeric layer; bonding the bottom surface of the second elastomeric layer onto a top surface of the first elastomeric layer such that a control channel forms in the second recess between the first and second elastomeric layers; and positioning the first elastomeric layer on top of a planar substrate such that a flow channel forms in the first recess between the first elastomeric layer and the planar substrate.
Abstract:
This invention provides microfluidic devices and methods for using the same. Microfluidic devices of the present invention comprises a first elastic layer, a fluid flow channel within the elastic layer; and a means for providing a fluid sample from the fluid flow channel to an analytical device. The present invention also provides an analytical apparatus comprising such a microfluidic device and an analytical device.