Abstract:
An improved deformable carrier or connector for an implantable neural interface device is described. The neural interface device comprises a carrier supporting at least one electrode array. The carrier comprises a tubular sidewall extending from a proximal carrier portion to a distal carrier portion. At least one deformable segment is provided in the carrier sidewall. The deformable segment is more pliable than the remainder of the carrier sidewall to preferably move in response to forces imparted on the carrier and the electrode array by the shifting forces in body tissue. The deformable segment takes the form of a thinned sidewall segment or a slitted wall segment.
Abstract:
One embodiment of the invention includes an implantable electrode lead system that includes a series of shims stacked upon each other, a series of first components, and a series of second components connected to the series of first components through a series of connectors. One of the first components extends from one of the shims, and another of the first components extends from another one of the shims. The shims position the first components in a three dimensional arrangement.
Abstract:
A method for providing a neural interface system. At least one primary metallization layer is deposited on a substrate. The primary metallization layer has a thickness. A monolayer of nanospheres is deposited in a substantially uniform distribution. The nanospheres contact an upper surface of the primary metallization layer. The upper surface of the primary metallization layer not contacted by the nanospheres is treated to form a plurality of undulating structures having a substantially uniform arrangement. The treating comprises etching recesses part-way through the thickness of exposed portions of the primary metallization layer from the upper surface thereof.
Abstract:
A method and system are provided for determining a relation between stimulation settings for a brain stimulation probe and a corresponding V-field. The brain stimulation probe comprises multiple stimulation electrodes. The V-field is an electrical field in brain tissue surrounding the stimulation electrodes. The method comprises sequentially applying a test current to n stimulation electrodes, n being a number between 2 and the number of stimulation electrodes of the brain stimulation probe, for each test current at one of the n stimulation electrodes, measuring a resulting excitation voltage at m stimulation electrodes, m being a number between 2 and the number of stimulation electrodes of the brain stimulation probe, from the stimulation settings and the measured excitation voltages, deriving a coupling matrix, an element in the coupling matrix reflecting an amount of electrical impedance between two of the stimulation electrodes, and using the coupling matrix for determining the relation between the stimulation settings and the corresponding V-field.
Abstract:
An implantable electrode system of is disclosed that includes a conductive electrode layer, an interconnect coupled to the electrode layer, an insulator that insulates the interconnect, and an anchor that more securely fixes the electrode layer in place. This structure is particularly useful with the electrode layer being a neural interface that is configured to provide either a recording or stimulating function. A method for forming such an implantable electrode system includes forming an interconnect over a base layer, forming an anchoring structure over the base layer, depositing an insulating material layer over the interconnect structure and over the anchoring structure, exposing a portion of the interconnect structure, forming an electrode layer over the insulating layer, the electrode layer contacting the exposed portion of the interconnect structure.
Abstract:
An optical electrode having a plurality of electrodes, including a recording electrode having a roughened surface and an optical light source configured to emit light, wherein at least a portion of the light impinges on the recording electrode. Also disclosed are methods of producing an optical electrode and an opto-electronic neural interface system.
Abstract:
A neural probe comprising an array of stimulation and/or recording electrodes supported on a tape spring-type carrier is described. The neural probe comprising the tape spring-type carrier is used to insert flexible electrode arrays straight into tissue, or to insert them off-axis from the initial penetration of a guide tube. Importantly, the neural probe is not rigid, but has a degree of stiffness provided by the tape spring-type carrier that maintains a desired trajectory into body tissue, but will subsequently allow the probe to flex and move in unison with movement of the body tissue.
Abstract:
A medical electrode array system comprising a thin-film substrate, a plurality of electrode contacts disposed on the thin-film substrate, and a plurality of traces. The plurality of electrode contacts is configured to provide electrical contact points. The plurality of traces is electrically connected to the plurality of electrode contacts. A electrode contact of the plurality of electrode contacts has a dedicated trace of the plurality of traces that provides electrical connectivity to the electrode contact. The thin-film substrate is configured to flex to maintain continuous contact with contours of patient anatomy. The plurality of traces includes flexible spring-like portions to add flexibility to the thin-film substrate.
Abstract:
A neural probe system having a single guide tube that is inserted into neural tissue and from which a number of neural probes can be deployed is described. Each probe is deployable into tissue along a desired trajectory. This is done by supporting the electrode array on a spring tape-type carrier that maintains axial stiffness once the neural probe has deployed out a channel in the guide tube. That way, a target neural tissue is bounded by an increased number of neural probes while minimizing trauma to surrounding body tissue.
Abstract:
A method and system are provided for determining a relation between stimulation settings for a brain stimulation probe and a corresponding V-field. The brain stimulation probe comprises multiple stimulation electrodes. The V-field is an electrical field in brain tissue surrounding the stimulation electrodes. The method comprises sequentially applying a test current to n stimulation electrodes, n being a number between 2 and the number of stimulation electrodes of the brain stimulation probe, for each test current at one of the n stimulation electrodes, measuring a resulting excitation voltage at m stimulation electrodes, m being a number between 2 and the number of stimulation electrodes of the brain stimulation probe, from the stimulation settings and the measured excitation voltages, deriving a coupling matrix, an element in the coupling matrix reflecting an amount of electrical impedance between two of the stimulation electrodes, and using the coupling matrix for determining the relation between the stimulation settings and the corresponding V-field.