Abstract:
Apparatus for improving a three-dimensional (3D) reconstruction of a sample is programmed to execute instructions including: removing uncorrelated noise in said 3D reconstruction with COMET or other regularization techniques; and removing correlated noise in said 3D reconstruction by applying an Extended Field Iterative Reconstruction Technique (EFIRT) procedure.
Abstract:
A method and system for obtaining force are provided, wherein the system includes a block made of a photoelastic material having multiple surfaces including a first surface on which an object is exerting the force to the block, and one or more polariscopes configured around the block, and wherein the method includes measuring photoelastic intensities by using three polariscopes simultaneously and obtaining each set of the photoelastic intensities sequentially in time to obtain a sequence of measured photoelastic intensities, and obtaining the force by using an optimization method based on the quantity associated with the difference between the measured and predicted photoelastic intensities.
Abstract:
Computerized method and system for improving 3D reconstruction images involves applying the Extended Field Iterative Reconstruction Technique (EFIRT) to remove correlated noise, in addition to with COMET (constrained maximum relative entropy tomography) or other regularization techniques to eliminate uncorrelated noise, wherein the EFIRT is applied by performing a set of successive reconstructions on an extended field larger than a region of interest (ROI); and extracting and averaging the ROI from said set of successive reconstructions.
Abstract:
A method for identifying a subject of Acropora genus to an Acropora species comprises of detecting one or more microsatellite loci in the genome of the subject, wherein the microsatellite loci are selected from the group consisting of a microsatellite locus 8346m3 and others. A method for quantifying an index of level of chimerism of a coral colony restored by transplanting an Acropora first coral colony of an Acropora species into a second coral colony in need of restoration that belongs to the same species as the first coral colony comprises of identifying one or more microsatellite loci whose PCR fragment size, amplified with genomic DNA derived from the first coral colony as template, is different from the PCR fragment size amplified with genomic DNA derived from the second coral colony.
Abstract:
A porous film made of size-selected tantalum nanoparticles is formed on a substrate, the porous film having a graded oxidation profile perpendicular to a surface of the substrate.
Abstract:
Disclosed is a process for preparing dihydro-2H-pyran derivatives of formula I: wherein R1 and R2 are defined herein. The process of the invention provides the compound of formula I in concise cascade reactions and in one pot. The compound of formulae I prepared by the process of the invention and its further transformed derivatives are useful for making pharmaceutical composition for the treatment of proliferative diseases.
Abstract:
Triboluminescent materials that generate emission of light in response to mechanical stimulus attract significant attention due to their applications in development of “smart materials” and damage sensors. Among metal complexes, rare-earth europium and terbium complexes are most widely used, while there is no systematic data on triboluminescence in more readily available and inexpensive Cu complexes, with only a few scattered examples reported in the literature. We report a new family of photoluminescent Cu—NHC complexes that show bright triboluminescence (TL) in crystal state visible even in ambient light under air upon grinding or crushing the crystalline sample. Moreover, when these complexes are dispersed into amorphous polymethylmethacrylate (PMMA) films even at small concentrations, TL is easily observed. In Cu-containing polymer films, surrounding gas discharge is likely involved in excitation of brightly luminescent Cu—NHC complexes. Observation of TL in polymer films overcomes limitations of using crystalline phase for mechanoresponse and opens up possibilities for development of mechanoresponsive coatings and materials based on inexpensive metals such as Cu.
Abstract:
The present invention provides advanced livestock wastewater treatment systems, devices and methods for simultaneous removal of nitrate (nitrite) from treated wastewater at cathode chamber and of organics, suspended solids and malodor (caused by volatile fatty acids) from raw wastewater at anode chamber using anaerobic bioelectrochemical system (BES). The present invention provides a device comprising at least one anode chamber equipped inside with at least one anode, and at least one cathode chamber equipped inside with at least one cathode, wherein the anode chamber is attached to the cathode chamber via separator in order to transport anions or cations between the anode chamber and the cathode chamber.
Abstract:
A long-persistent luminescence emitter containing a polymer that contains, relative to the total molar amount of an electron donor structural unit and an electron acceptor structural unit therein, 70 mol % or more of an electron donor structural unit and less than 30 mol % of an electron acceptor structural unit, or containing a polymer that contains, relative to the total molar amount of an electron donor structural unit and an electron acceptor structural unit therein. 70 mol % or more of an electron acceptor structural unit and less than 30 mol % of an electron donor structural unit. The emission decay after stopping light irradiation to the emitter is power law decay.
Abstract:
A non-transitory, computer-readable recording medium stores a program of reinforcement learning by a state-value function. The program causes a computer to execute a process including calculating a temporal difference (TD) error based on an estimated state-value function, the TD error being calculated by giving a perturbation to each component of a feedback coefficient matrix that provides a policy; calculating based on the TD error and the perturbation, an estimated gradient function matrix acquired by estimating a gradient function matrix of the state-value function with respect to the feedback coefficient matrix for a state of a controlled object, when state variation of the controlled object in the reinforcement learning is described by a linear difference equation and an immediate cost or an immediate reward of the controlled object is described in a quadratic form of the state and an input; and updating the feedback coefficient matrix using the estimated gradient function matrix.