Abstract:
A semiconductor device including a memory cell is provided. The memory cell comprises a transistor, a memory element and a capacitor. One of first and second electrodes of the memory element and one of first and second electrodes of the capacitor are formed by a same metal film. The metal film functioning as the one of first and second electrodes of the memory element and the one of first and second electrodes of the capacitor is overlapped with a film functioning as the other of first and second electrodes of the capacitor.
Abstract:
A beam dose computing method includes specifying a matrix of rows and columns of regions as divided from a surface area of a target object to include first, second and third regions of different sizes, the third regions being less in size than the first and second regions, determining first corrected doses of a charged particle beam for correcting fogging effects in the first regions, determining corrected size values for correcting pattern line width deviations occurring due to loading effects in the second regions, using said corrected size values in said second regions to create a map of base doses of the beam in respective ones of said second regions, using said corrected size values to prepare a map of proximity effect correction coefficients in respective ones of said second regions, using the maps to determine second corrected doses of said beam for correction of proximity effects in said third regions, and using the first and second corrected doses to determine an actual beam dose at each position on the surface of said object.
Abstract:
A pattern inspection apparatus includes a stage configured to mount thereon a target workpiece to be inspected where patterns are formed, at least one sensor configured to move relatively to the stage and capture optical images of the target workpiece to be inspected, a first comparing unit configured to compare first pixel data of an optical image captured by one of the at least one sensor with first reference data at a position corresponding to a position of the first pixel data, and a second comparing unit configured to compare second pixel data of an optical image captured by one of the at least one sensor at a position shifted by a sub-pixel unit from the position where the optical image of the first pixel data is captured, with second reference data at a position corresponding to the position of the second pixel data.
Abstract:
An MRI apparatus and method are provided which are capable of properly setting imaging position of regions of a subject on a table and moving the table to the set positions, for imaging a wide range or the entire body range of the subject.
Abstract:
A charged particle beam writing apparatus includes a first part configured, based on pattern data, to estimate a total writing time, a second part configured to acquire a base dose at an arbitrary time, after writing start time and within the total writing time by using a first correlation among a time having passed since the writing start time, the total writing time, and the base dose, a third part configured to acquire a fogging effect correction coefficient at the arbitrary time by using a second correlation among the time, the total writing time and the coefficient, a forth part configured to calculate a beam dose at the arbitrary time by using the base dose and the coefficient, a fifth part configured to calculate a beam irradiation time based on the beam dose, a deflector for deflecting the beam, and an aperture for blocking the beam.
Abstract:
A pattern generation method includes changing a dimension of a pattern included in each mesh-like region of a plurality of mesh-like regions by using an area of the pattern and a total sum of lengths of circumferential sides of the pattern included in each mesh-like region to correct a dimension error of the pattern, wherein the dimension error being caused by loading effects and the plurality of mesh-like regions being virtually divided from a pattern forming region of a target object, and generating a pattern of the dimension changed on the target object.
Abstract:
A rotation detecting apparatus for use in producing a photo film cassette has an opaque detecting dog device secured in a manner rotatable together with a rotatable inserter. A light source device applies collimated light flux to the detecting dog device. A detection hole is formed through the detecting dog device, for receiving application of the collimated light flux, and passing light through the detection hole when openings at ends thereof are aligned with one another in a direction of the collimated light flux. A photo receptor receives the passed light passed through the detection hole, and outputs a detection signal according to an amount of the received passed light. In the retention, a trailer of photo film is picked up by the inserter. The inserter is rotationally inserted through a passageway of the photo film cassette. The trailer is fastened on a trailer fastener of a spool.
Abstract:
A liquid jetting pump of the present invention is constructed such that an intra container liquid is sucked into a cylinder 3 through a suction valve 9 by moving a vertically movable member 4 up and down, and the intra cylinder liquid is jetted out of a nozzle 29 through a discharge valve 31 from a stem 28. A plurality of ribs 10 are protruded in a peripheral direction from a lower edge part within the cylinder. Engagement recessed portions 11 are formed in inner parts of the upper surfaces of the ribs. A lower edge of a coil spring 38 for biasing the vertically movable member 4 is secured to each of the engagement recessed portions 11, thereby permitting a flow of liquid on both sides of the lower edge of the spring internally externally.
Abstract:
A thin film producing method in which the wafer film forming processing for a wafer to be a product may be carried out efficiently to shorten the processing time and to raise the operating ratio of the device. In a thin film deposition method using a single wafer processing for forming a thin film by chemical reaction under heat, a pseudo-process is provided which operates to suppress variations in the film thickness caused by the temperature in a reaction chamber 11. This pseudo process is the pre-heating processing of heating the reaction chamber 11 before actually charging the wafer W into the reaction chamber 11.
Abstract:
In a contrast MRA measurement, sampling order of k-space is controlled considering the distance from the origin such that sampling the low-frequency data is performed a time when the contrast concentration reaches it peak. First, the sampling points of k-space are divided into two groups. Then, a measurement of the first group is started a time when the contrast concentration of a blood vessel of interest becomes high and is controlled from the high-frequency component to the low-frequency component such that the distance of a sampling point from the origin progressively decreases. A measurement of the other group, which is performed successively, is controlled from the low-frequency component to the high-frequency component such that the distance of a sampling point from the origin progressively increases. According to this ordering, influence of measurement time error in the contrast MRA measurement can be reduced and the whole blood vessel can be imaged with high contrast. In addition, an artery can be selectively imaged.