Abstract:
A microelectromechanical system (MEMS) device includes a semiconductor substrate, a MEMS including a fixed electrode and a movable electrode formed on the semiconductor substrate through an insulating layer, and a well formed in the semiconductor substrate below the fixed electrode. The well is one of an n-type well and a p-type well. The p-type well applies a positive voltage to the fixed electrode while the n-type well applies a negative voltage to the fixed electrode.
Abstract:
A resonator with a microeletromechanical system structure has a transistor with a gate electrode, a capacitor with an upper and lower electrode, a substrate, a first and second structure of the microelectromechanical system structure, a first silicon layer of the first structure and the upper electrode formed above the substrate, a second silicon layer of the second structure and the gate electrode unit formed above the substrate, and an insulating film formed above the capacitor and the transistor, the insulating film having an opening for placement of the second structure.
Abstract:
In order to provide an organic electroluminescence device with high luminous efficiency and good durability, the present invention provides a charge transporting material including a compound represented by Formula (Cz-1) wherein the content of a particular halogen-containing impurity in the charge transporting material is from 0.000% to 0.10% when the content is calculated as a proportion of the absorption intensity area of the impurity with respect to the total absorption intensity area of the charge transporting material, as measured by high-performance liquid chromatography at a measurement wavelength of 254 nm, and an organic electroluminescence device wherein the charge transporting material is included in an organic layer: wherein in Formula (Cz-1), each of R1 to R5 independently represents a particular atom or group; and each of n1 to n5 independently represents a particular integer.
Abstract:
Provided is an agent for treating or preventing urinary frequency, urinary urgency and urinary, incontinence which are associated with overactive bladder, a lower urinary tract disease such as interstitial cystitis and chronic prostatitis accompanied by lower urinary tract pain, and various diseases accompanied by pain. A novel azolecarboxamide derivative in which an azole ring such as thioazole or oxazole is bonded to a benzene ring, pyridine ring or pyrimidine ring through carboxamide was confirmed to have a potent trkA receptor-inhibitory activity and found to be an agent for treating or preventing lower urinary tract disease and various diseases accompanied by pain, which is excellent in efficacy and safety, and thus the present invention was accomplished.
Abstract:
An oscillator includes: a vibrator having a first electrode and a second electrode disposed with a gap with the first electrode; a reference voltage supply circuit adapted to supply a reference voltage; and a voltage adjustment circuit having a step-up circuit operating in response to input of clock pulses and adapted to convert the reference voltage into a voltage of a predetermined level and to output the voltage of the predetermined level, wherein the vibrator is configured so as to apply the voltage of the predetermined level, which is output from the voltage adjustment circuit, between the first electrode and the second electrode, and the clock pulses to be input into the step-up circuit are obtained using the vibrator as a source.
Abstract:
A microelectromechanical system (MEMS) device includes a semiconductor substrate, a MEMS including a fixed electrode and a movable electrode formed on the semiconductor substrate through an insulating layer, and a well formed in the semiconductor substrate below the fixed electrode. The well is one of an n-type well and a p-type well. The p-type well applies a positive voltage to the fixed electrode while the n-type well applies a negative voltage to the fixed electrode.
Abstract:
A micro electro mechanical system (MEMS) device includes: a fixed electrode made of silicon and provided above a semiconductor substrate; a movable electrode made of silicon and arranged in a mechanically movable manner by having a gap from the semiconductor substrate; and a wiring layered part that is provided around the movable electrode, covers a portion of the fixed electrode and includes wiring. One of the fixed electrode and the movable electrode is implanted with an impurity ion and at least a part of the portion of the fixed electrode covered by the wiring layered part is silicidized.
Abstract:
An electronic device, including a substrate, a functional structure constituting a functional element formed on the substrate, and a cover structure forming a cavity portion in which the functional structure is disposed, is disclosed. In the electronic device, the cover structure includes a laminated structure of an interlayer insulating film and a wiring layer, the laminated structure being formed on the substrate in such a way that it surrounds the cavity portion, and the cover structure has an upside cover portion covering the cavity portion from above, the upside cover portion being formed with part of the wiring layer that is disposed above the functional structure.
Abstract:
A method is for manufacturing a microelectromechanical system resonator having a semiconductor device and a microelectromechanical system structure unit formed on a substrate. The method includes: forming a lower electrode of an oxide-nitride-oxide capacitor unit included in the semiconductor device using a first silicon layer; forming, using a second silicon layer, a substructure of the microelectromechanical system structure unit and an upper electrode of the oxide-nitride-oxide capacitor unit included in the semiconductor device; and forming, using a third silicon layer, a superstructure of the microelectromechanical system structure unit and a gate electrode of a complementary metal oxide semiconductor circuit unit included in the semiconductor device.
Abstract:
A method is for manufacturing a microeletromechanical system resonator having a semiconductor device and a microelectromechanical system structure unit formed on a substrate. The method includes: forming a lower electrode of an oxide-nitride-oxide capacitor unit included in the semiconductor device using a first silicon layer; forming, using a second silicon layer, a substructure of the microelectromechanical system structure unit and an upper electrode of the oxide-nitride-oxide capacitor unit included in the semiconductor device; and forming, using a third silicon layer, a superstructure of the microelectromechanical system structure unit and a gate electrode of a complementary metal oxide semiconductor circuit unit included in the semiconductor device.