Abstract:
A pixel array, a driving method thereof and a flat panel display using the same are provided. The pixel array includes a first, a second, a third, and a fourth scan lines. A plurality of pixels is disposed between the first and the second scan lines. A plurality of pixels is disposed between the third and the fourth scan lines. In a first frame period, a gate driving circuit sequentially provides a driving signal to the first, the second, the fourth and the third scan lines. In a second frame period, the gate driving circuit sequentially provides the driving signal to the second, the first, the third and the fourth scan lines.
Abstract:
A process debug method used to identify at least one excursive machine in a manufacturing process comprising the following steps: First, a series of validity identification data is collected, and the serial validity identification data is associated with its pathway to obtain a plurality of validity identification data sequences in corresponding to the machines. Subsequently, a sorting process is conducted to cluster the validity identification data sequence into several groups, and the clustered groups are ranked into a first order. The validity identification data sequences are subjected a continuity analysis to determine the continuity of the defects occurring in a particular machine. And the continuities of the machines involved in a particular group are ranked into a second order. Accordingly, the excursive machines causing the defective end products in the manufacturing process can be identified by the way of joining the second orders according to the first order.
Abstract:
The invention discloses a bias balancing circuit. The bias balancing circuit is used for balancing an output voltage outputted by an amplifier module. The amplifier module has a variable gain. The bias balancing circuit comprises a comparator and a voltage selector. The comparator is used for comparing the output voltage and a reference voltage, to generate a comparison signal. The voltage selector is used for generating a selected voltage according to the comparison signal. When the variable gain is changed to result in an offset from the output voltage to the reference voltage, the bias balancing circuit is capable of balancing the output voltage toward the reference voltage by the selected voltage.
Abstract:
A local location-tracking system is installed in an indoor space, and comprises at least one tracked end, a plurality of second wireless signal transceivers and a local control end. The tracked end is movably located within the indoor space, and has at least one first wireless signal transceiver for sending a tracked signal. Each of the second wireless signal transceivers sends a detecting signal to the tracked end, the tracked end generates a response signal in accordance with the detecting signal, and the second wireless signal transceiver sends out a strength signal in accordance with a signal strength of the response signal. The local control end is applied to receive the strength signal and calculating a location coordinate of the tracked end in accordance with the signal strength.
Abstract:
A measuring system comprises a pulse generator, an under test device, a variable resistor and a detecting control system. The pulse generator provides pulse signals with different voltage peaks to the under test device and the variable resistor. The variable resistor adjusts its resistance value according to a control signal. The detecting control system detects the voltage ringing ranges of the first terminal of the under test device at different resistance values. The detecting control system generates the control signal to adjust the resistance value of the variable resistor according to the voltage ringing ranges.
Abstract:
The present invention relates to a projecting capacitive touch sensing device, display panel, and image display system. The projecting capacitive touch sensing comprises an array of a plurality of sensing units, each sensing unit including: a first electrode made of a sensing material, at least one second electrode made of a sensing material and being disposed around the peripheral of the first electrode, at least one first sensing axis electrically connected to the first electrode, and at least one second sensing axis electrically connected to the second electrodes. The first electrode is quadrangle, while the second electrodes are triangular-shaped. The first electrode and the plurality of second electrodes are arranged to form a rectangular, and a non-sensing area is defined between the first electrode and the second electrodes.
Abstract:
A digital to analog converter is provided comprising a charge sharing circuit, a discharging circuit and a voltage boosting circuit. The charge sharing circuit sequentially receives first to (N-1)th bits of serial digital signals. The charge sharing circuit shares and stores charges between a first capacitor and a second capacitor according to a charging voltage, a ground voltage, a first clock signal and serial data signals. The discharging circuit discharges the charge sharing circuit according to a reset signal. After the voltage boosting circuit receive the (N-1)th digital signal, the charge boosting circuit whether to boost a first terminal and a second terminal of the second capacitor or not based on an Nth digital signal. After the voltage boosting circuit receives the Nth serial digital signal, the charge sharing circuit outputs an analog signal from the second terminal of the second capacitor.
Abstract:
A shift register without a feedback signal of a post-stage shift register utilizing a latch mechanism and a clock signal to control the voltage of an output of the shift register is provided. The shift register reduces the transistor size and the circuit layout area. The shift register also improves the issue the overlapping between two adjacent shift registers to reduce the after-image of a liquid crystal display.
Abstract:
A shift register includes a signal generating circuit for generating an output signal at an output end of the shift register in response to a clock signal while the signal generating circuit is turned on, a driving circuit electrically coupled to the signal generating circuit for controlling the signal generating circuit in response to an input signal received from an input end of the shift register, a primary reset circuit electrically coupled to the signal generating circuit for turning off the signal generating circuit and resetting the output signal from the output end, and a feedback circuit electrically coupled to the output end and the major reset circuit for controlling the primary reset circuit in response to the output signal and the clock signal.
Abstract:
A shift registers circuit having a series of cascading shift registers comprises a first transistor coupling to an output signal of a pre-stage shift register, a second transistor coupling to the first transistor, an output and a first clock signal, and a pull-down module coupling to the output, output signals of pre-stage and post-stage shift register, a second and a third voltage level. When the second transistor turns on and the first clock signal is at high voltage level, the output is at a first voltage level. When the signal of post-stage shift register is at first voltage level, the output is at the third voltage level.