Abstract:
A debris mitigation system for trapping contaminant material coming from a debris-generating radiation source. The system includes a contamination barrier constructed and arranged to rotate about an axis, and a magnet structure constructed and arranged to provide a magnetic field for deflecting charged debris from the radiation source. The magnet structure is constructed and arranged to provide a magnetic field through the contamination barrier. The magnetic field, when passing through the contamination barrier, is oriented along planes generally coinciding with the axis of rotation of the contamination barrier.
Abstract:
A patterning device for a photolithographic apparatus is used to form a patterned radiation beam, by imparting a cross-sectional pattern to the radiation beam during reflection from the patterning device. The patterning device comprises a layer of phase-change material that is capable of locally undergoing an induced structural phase change into respective ones of a plurality of stable and/or metastable states. Furthermore, the patterning device comprises a radiation reflective structure with periodically arranged layers adjacent to the layer of phase-change material. The radiation reflective structures do not partake in the phase changes. By locally changing the phase of the phase-change material, the reflectivity of the whole structure is modified, for example due to thickness changes in the layer of phase-change material that lead to destructive interference of different components of the reflected light or due to changes in surface roughness of the radiation reflective structure.
Abstract:
A spectral purity filter includes a body of material, through which a plurality of apertures extend. The apertures are arranged to suppress radiation having a first wavelength and to allow at least a portion of radiation having a second wavelength to be transmitted through the apertures. The second wavelength of radiation is shorter than the first wavelength of radiation. The body of material is formed from a material having a bulk reflectance of substantially greater than or equal to 70% at the first wavelength of radiation. The material has a melting point above 1000° C.
Abstract:
A spectral purity filter is configured to allow transmission therethrough of extreme ultraviolet (EUV) radiation and to refract or reflect non-EUV secondary radiation. The spectral purity filter may be part of a source module and/or a lithographic apparatus.
Abstract:
According to an aspect of the present invention, a spectral purity filter includes an aperture, the aperture being arranged to diffract a first wavelength of radiation and to allow at least a portion of a second wavelength of radiation to be transmitted through the aperture, the second wavelength of radiation being shorter than the first wavelength of radiation, wherein the aperture has a diameter greater than 20 μm.
Abstract:
A spectral purity filter includes a body of material, through which a plurality of apertures extend. The apertures are arranged to suppress radiation having a first wavelength and to allow at least a portion of radiation having a second wavelength to be transmitted through the apertures. The second wavelength of radiation is shorter than the first wavelength of radiation. The body of material is formed from a material having a bulk reflectance of substantially greater than or equal to 70% at the first wavelength of radiation. The material has a melting point above 1000° C.
Abstract:
A radiation source includes a radiation emitter configured to emit radiation, a collector configured to collect the radiation, and a contamination trap configured to trap contamination emitted by the radiation source. The contamination trap includes a plurality of foils that extend substantially radially, a first magnet ring configured to lie outside of an outer conical trajectory of radiation that is collected by the collector, and a second magnet ring configured to lie within the trajectory of radiation that is collected by the collector. The magnet rings are configured to provide a magnetic field that includes a component that is parallel to the foils.
Abstract:
A zone plate includes a plurality of consecutively arranged, adjacent, and alternating first and second regions. The first regions are arranged to be substantially transparent to a first predetermined wavelength of radiation and a second predetermined wavelength of radiation that is different from the first predetermined wavelength of radiation. The second regions are arranged to be substantially opaque, diffractive, or reflective to the first predetermined wavelength of radiation and substantially transparent to the second predetermined wavelength of radiation.
Abstract:
A transmissive spectral purity filter is configured to transmit extreme ultraviolet radiation. The spectral purity filter includes a filter part having a plurality of apertures configured to transmit extreme ultraviolet radiation and to suppress transmission of a second type of radiation. Each aperture has been manufactured by an anisotropic etching process.
Abstract:
A spectral purity filter is configured to reflect extreme ultraviolet radiation. The spectral purity filter includes a substrate, and an anti-reflective coating on a top surface of the substrate. The anti-reflective coating is configured to transmit infrared radiation. The filter also includes a multi-layer stack configured to reflect extreme ultraviolet radiation and to substantially transmit infrared radiation.