Abstract:
A semiconductor device and method of manufacturing a semiconductor device is disclosed. The exemplary semiconductor device and method for fabricating the semiconductor device enhance carrier mobility. The method includes providing a substrate and forming a dielectric layer over the substrate. The method further includes forming a first trench within the dielectric layer, wherein the first trench extends through the dielectric layer and epitaxially (epi) growing a first active layer within the first trench and selectively curing with a radiation energy the dielectric layer adjacent to the first active layer.
Abstract:
A metal polishing slurry includes a chemical solution and abrasives characterized by a bimodal or other multimodal distribution of particle sizes or a prevalence of two or more particle sizes or ranges of particle sizes. A method and system for using the slurry in a CMP polishing operation, are also provided.
Abstract:
A semiconductor contact structure and method provide contact structures that extend through a dielectric material and provide contact to multiple different subjacent materials including a silicide material and a non-silicide material such as doped silicon. The contact structures includes a lower composite layer formed using a multi-step ionized metal plasma (IMP) deposition operation. A lower IMP film is formed at a high AC bias power followed by the formation of an upper IMP film at a lower AC bias power. The composite layer may be formed of titanium. A further layer is formed as a liner over the composite layer and the liner layer may advantageously be formed using CVD and may be TiN. A conductive plug material such as tungsten or copper fills the contact openings.
Abstract:
A method for forming a semiconductor structure includes forming a dielectric layer over a substrate. A first non-conductive barrier layer is formed over the dielectric layer. At least one opening is formed through the first non-conductive barrier layer and within the dielectric layer. A second non-conductive barrier layer is formed over the first non-conductive barrier layer and within the opening. At least a portion of the second non-conductive barrier layer is removed, thereby at least partially exposing a top surface of the first non-conductive barrier layer and a bottom surface of the opening, with the second non-conductive barrier layer remaining on sidewalls of the opening. A seed layer and conductive layer is then formed and a single polishing operation removes the seed layer and conductive layer.
Abstract:
Aspects of the present disclosure provide a method and a system for providing a selection of golden tools for better defect density and product yield. A golden tool selection and dispatching system is provided to integrate different components for robust golden tool selection and dispatching. The golden tool selection system selects a set of golden tools based on performance of a set of manufacturing tools and provides a fully automated operational environment to produce a product using the set of golden tools.
Abstract:
Electrochemical plating (ECP) apparatuses with auxiliary cathodes to create uniform electric flux density. An ECP apparatus for electrochemical deposition includes an electrochemical cell with an electrolyte bath for electrochemically depositing a metal on a substrate. A main cathode and an anode are disposed in the electrolyte bath to provide a main electrical field. A substrate holder assembly holds a semiconductor wafer connecting the cathode. An auxiliary cathode is disposed outside the electrochemical cell to provide an auxiliary electrical field such that a flux line density at the center region of the substrate holder assembly substantially equals that at the circumference of the substrate holder assembly.
Abstract:
A current-leveling electrode for improving electroplating and electrochemical polishing uniformity in the electrochemical plating or electropolishing of metals on a substrate is disclosed. The current-leveling electrode includes a base electrode and at least one sub-electrode carried by the base electrode. The at least one sub-electrode has a width which is less than a width of the base electrode to impart a generally tapered, stepped or convex configuration to the current-leveling electrode.
Abstract:
A method of forming an integrated circuit structure includes forming a dielectric layer; forming an opening in the dielectric layer; performing a net deposition step to form a seed layer having a portion in the opening, wherein the net deposition step comprises a first deposition and a first etching; performing a net etch step to the seed layer, wherein the net etch step comprises a first etching and a first deposition, wherein a portion of the seed layer remains after the net etch step; and growing a conductive material on the seed layer to fill a remaining portion of the opening.
Abstract:
A method of electroplating a metal layer on a semiconductor device includes a sequence of biasing operations that includes a first electroplating step at a first current density followed by a second immersion step at a second current density being less than the first current density, and subsequent electroplating steps of increasing current densities beginning with a third electroplating step having a third current density that is greater than the first current density. The second, low current density immersion step improves the quality of the plating process and produces a plated film that completely fills openings such as vias and trenches and avoids hollow vias and pull-back on the bottom corners of via and trench openings. The low current density second immersion step produces an electrochemical deposition process that provides low contact resistance and therefore reduces device failure.
Abstract:
Two problems seen in CMP as currently executed are a tendency for slurry particles to remain on the surface and the formation of a final layer of oxide. These problems have been solved by adding to the slurry a quantity of TMAH or TBAH. This has the effect of rendering the surface being polished hydrophobic. In that state a residual layer of oxide will not be left on the surface at the conclusion of CMP. Nor will many slurry abrasive particles remain cling to the freshly polished surface. Those that do are readily removed by a simple rinse or buffing. As an alternative, the CMP process may be performed in three stages—first convention CMP, then polishing in a solution of TMAH or TBAH, and finally a gentle rinse or buffing.