Abstract:
A camera-movement compensation device includes a first liquid-crystal cell with a pair of parallel transparent plates and a first voltage source coupled to the first liquid-crystal cell and able to apply and alter a first voltage gradient across the plates of the first liquid-crystal cell. The device also includes a second liquid-crystal cell having a pair of parallel transparent plates and disposed so that each of the plates of the second liquid-crystal cell is parallel to the plates of the first liquid-crystal cell and in light communication with at least one wave of light passing through the plates of the first liquid-crystal cell, a second voltage source coupled to the second liquid-crystal cell and able to apply and alter a second voltage gradient across the surfaces of the second liquid-crystal cell, and a movement detector coupled to the voltage sources to alter the slope of the voltage gradients in proportion to a movement.
Abstract:
An auto-focus camera (100) can include a lens (102), a sensor (108) for detecting an image from the lens, a first liquid crystal layer (104) between the lens and the sensor, and a second liquid crystal layer (106) between the lens and the sensor and further orthogonally aligned to the first liquid crystal layer. The auto-focus camera can further include an integrated circuit programmed to drive the first liquid crystal layer and the second liquid crystal layer. The auto-focus camera can include a controller (202) programmed to control two orthogonally aligned liquid crystal layers. The liquid crystal layers can serve as an optical anti-alias filter using birefringence properties of the liquid crystal layers. The first liquid crystal layer and the second liquid crystal layer can be orthogonally aligned to achieve polarization insensitive operation of the auto-focus camera.
Abstract:
Disclosed herein are a plurality of displays for an electronic device including a display layer (102, 104), a light guide layer (108), and a damping material layer (110) coupled between the light guide layer and the display layer. The display layer in one embodiment is a liquid crystal display layer, but other types of display layers may be used. The light guide layer may serve as a back light for the display layer, and may be between approximately 0.05 mm and 2 mm in thickness. Devices described herein include at least one interposed layer of acoustic and/or mechanical energy absorbing material, also referred to herein as damping material, between the display layer susceptible to vibration, and a hard layer near the display layer. The damping material as described herein may reduce the audio noise. The energy absorbing layer may take the form of an audio energy absorbing sheet interposed between layers of the display.
Abstract:
An antenna suitable for use in a Radio Frequency Identification (RFID) tag is disclosed. The antenna includes a plurality of discrete loop antennas (130, 140, 150) disposed concentrically on a substrate. Each one of said plurality of loop antennas is electrically isolated from each other one of said plurality of loop antennas.
Abstract:
A flexible active signal cable (100, 200) includes a flexible printed circuit substrate (105), two electrical connectors (110), at least two metal conductors (115), at least one flexible optical waveguide (120), an optical transmitter (125), and an optical receiver (130). In some embodiments, the flexible active signal cable is less than 0.5 meters long and is capable of being wrapped and unwrapped from a 5 millimeter diameter mandrel 10,000 times with a low probability of failure at a test temperature, while supporting data rates greater than 25 megabits per second.
Abstract:
A two-way trans-reflective display pixel (100) having two viewable sides (102, 104) is disclosed. The two-way trans-reflective display pixel has a first transparent layer (106), a second transparent layer (108), and light modulating medium (110) sandwiched between them. Both the first and second transparent layers (106, 108) have light reflectors (132, 136) and light absorbers (130, 134), which allow light entering from either viewable sides (102, 104) to partially reflected, partially absorbed, and partially transmitted, allowing an image to be viewable from both viewable sides (102, 104). A two-way trans-reflective display (402) comprising a plurality of two-way trans-reflective display pixels (100) and a transparent light source (412) is also disclosed. The transparent light source (412) provides color light, and enables an image from the two-way trans-reflective display (402) to be viewable in color from both first and second viewable sizes (418, 602).
Abstract:
An O-plate compensator is manufactured by dissolving a polyimide polymer material incorporating a plurality of bulky side-chain groups in a first solvent to form a first solution, applying the first solution to a substrate, evaporating the first solvent to form an alignment layer, buffing the alignment layer, dissolving a polymerizable liquid crystal material in a second solvent to form a second solution, applying the second solution to the alignment layer, evaporating the second solvent to form a thin film of polymerizable liquid crystal material (with a nematic phase, an alignment-layer interface having a liquid crystal pretilt angle of between approximately 25 and 65 degrees, and an air interface), adjusting the temperature of the thin film to obtain a uniform specified orientation of a director of the thin film, and polymerizing the thin film with ultraviolet radiation to achieve a liquid crystal pretilt angle of between approximately 25 and 65 degrees at the air interface.