Abstract:
A relofted, spunbonded nonwoven web exhibiting a solidity of from less than 8.0%, to at least 3.0%, and exhibiting a Quality Factor of at least 0.30. Methods of making a relofted web; and, methods of using a relofted web as an air-filtration web, e.g. as a filter media or a layer thereof.
Abstract:
A nonwoven web including a multiplicity of non-respirable, polycrystalline, aluminosilicate ceramic filaments entangled to form a cohesive mat, the polycrystalline, aluminosilicate ceramic filaments having an average mullite percent of at least 75 wt. %. The cohesive mat preferably exhibits a compression resilience after 1,000 cycles at 900° C. when measured according to the Fatigue Test, of at least 30 kPa. Insulation articles including the cohesive mats or formed by chopping the ceramic mats into ceramic fibers, pollution control devices including the insulation articles, and methods of making the non-respirable, polycrystalline, aluminosilicate ceramic filaments and fibers, nonwoven webs, insulation articles, and pollution control devices, are also described.
Abstract:
Spunbonded electret webs comprising polylactic acid fibers, in which at least some of the polylactic acid fibers are meltspun, drawn, charged fibers that include charging additive; and, methods of making such fibers and webs.
Abstract:
A blend of polyester staple fibers and insulation fill materials useful as a replacement for natural down in articles such as outdoor apparel, sleeping bags, bedding, etc. The blend includes first, second and optionally third polyester staple fiber formats that differing in terms of average diameter. A length of substantially all the fibers of the blend is in the range of about 16 to about 63 mm, alternatively 20-40 mm. At least a majority of the fibers of the blend are opened. In some embodiments, some or substantially all of the fibers of the blend are crimped and/or include a lubricant (e.g., siliconized). One non-limiting example blend includes 20-30 weight percent of not greater than 1 Denier fibers, 20-30 weight percent of greater than 1 up to 2 Denier fibers, and 40-60 weight percent of greater than 2 Denier fibers.
Abstract:
A functionalized nonwoven substrate and methods for preparing the same are described. The functionalized substrates are useful in selectively filtering and removing biological materials, such as biocontaminates, from biological samples.
Abstract:
Dimensionally stable nonwoven fibrous webs include a multiplicity of continuous fibers formed from one or more thermoplastic polyesters and polypropylene in an amount greater than 0% and no more than 10% by weight of the web. The webs have at least one dimension which decreases by no greater than 10% in the plane of the web when heated to a temperature above a glass transition temperature of the fibers. When the thermoplastic polyester is selected to include aliphatic and aromatic polyesters, a spunbond process may be used to produce substantially continuous fibers that exhibit molecular orientation. When the thermoplastic polyester is selected from aliphatic polyesters, a meltblown process may be used to produce discontinuous fibers that do not exhibit molecular orientation. The webs may be used as articles for filtration, sound absorption, thermal insulation, surface cleaning, cellular growth support, drug delivery, personal hygiene, medical apparel, or wound dressing.
Abstract:
Dimensionally stable nonwoven fibrous webs include a multiplicity of continuous fibers formed from one or more thermoplastic polyesters and polypropylene in an amount greater than 0% and no more than 10% by weight of the web. The webs have at least one dimension which decreases by no greater than 10% in the plane of the web when heated to a temperature above a glass transition temperature of the fibers. A spunbond process may be used to produce substantially continuous fibers that exhibit molecular orientation. A meltblown process may be used to produce discontinuous fibers that do not exhibit molecular orientation. In some embodiments, the fibers comprise a viscosity modifier and/or an anionic surfactant. The webs may be used as articles for filtration, sound absorption, thermal insulation, surface cleaning, cellular growth support, drug delivery, personal hygiene, medical apparel, or wound dressing.
Abstract:
A dimensionally stable bonded nonwoven fibrous web formed by extruding melt blown fibers of a polymeric material, collecting the melt blown fibers as an initial nonwoven fibrous web, and annealing the initial nonwoven fibrous web with a controlled heating and cooling operation, is described. The bonded nonwoven fibrous web shrinkage is typically less than 4 percent relative to the initial nonwoven fibrous web.
Abstract:
A grafted nonwoven substrate is disclosed having average fiber sizes of 0.7 to 15 microns, and a void volume of 50 to 95%, and a polymer comprising cationic aminoalkyl(meth)acryloyl monomer units grafted to the surface of the nonwoven substrate. The article may be used as a filter element to purify or separate target materials, such as oligonucleotides or monoclonal antibodies (MAb), from a fluid mixture.
Abstract:
A grafted nonwoven substrate is disclosed having average fiber sizes of 0.7 to 15 microns, and a void volume of 50 to 95%, and a polymer comprising cationic aminoalkyl(meth)acryloyl monomer units grafted to the surface of the nonwoven substrate. The article may be used as a filter element to purify or separate target materials, such as oligonucleotides or monoclonal antibodies (MAb), from a fluid mixture.