Abstract:
Zeolite catalysts and systems and methods for preparing and using zeolite catalysts having the CHA crystal structure are disclosed. The catalysts can be used to remove nitrogen oxides from a gaseous medium across a broad temperature range and exhibit hydrothermal stable at high reaction temperatures. The zeolite catalysts include a zeolite carrier having a silica to alumina ratio from about 15:1 to about 256:1 and a copper to alumina ratio from about 0.25:1 to about 1:1.
Abstract:
Catalysts comprising metal-loaded non-zeolitic molecular sieves having the CHA crystal structure, including Cu-SAPO-34, and methods for treating exhaust gas incorporating such catalysts are disclosed. The catalysts can be used to remove nitrogen oxides from a gaseous medium across a broad temperature range and exhibit hydrothermal stability at high reaction temperatures.
Abstract:
Zeolite catalysts and systems and methods for preparing and using zeolite catalysts having the CHA crystal structure are disclosed. The catalysts can be used to remove nitrogen oxides from a gaseous medium across a broad temperature range and exhibit hydrothermal stable at high reaction temperatures. The zeolite catalysts include a zeolite carrier having a silica to alumina ratio from about 15:1 to about 256:1 and a copper to alumina ratio from about 0.25:1 to about 1:1.
Abstract:
Described is a selective catalytic reduction catalyst comprising a zeolitic framework material of silicon and aluminum atoms, wherein a fraction of the silicon atoms are isomorphously substituted with a tetravalent metal. The catalyst can include a promoter metal such that the catalyst effectively promotes the reaction of ammonia with nitrogen oxides to form nitrogen and H2O selectively over a temperature range of 150 to 650° C. In another aspect, described is a selective catalytic reduction composite comprising an SCR catalyst material and an ammonia storage material comprising a transition metal having an oxidation state of IV. The SCR catalyst material promotes the reaction of ammonia with nitrogen oxides to form nitrogen and H2O selectively over a temperature range of 150° C. to 600° C., and the SCR catalyst material is effective to store ammonia at temperatures of 400° C. and above. A method for selectively reducing nitrogen oxides, and a method for simultaneously selectively reducing nitrogen oxide and storing ammonia are also described. Additionally, an exhaust gas treatment system is also described.