Abstract:
A smartphone senses a user's emotional reaction to certain output (e.g., an output from a smartphone's attempt to read a barcode printed in a newspaper). The phone then tailors its operation based on the sensed reaction (e.g., it may turn on a torch to better illuminate the newspaper, or vary image processing or decoding parameters).
Abstract:
Audio signal processing enhances audio watermark embedding and detecting processes. Audio signal processes include audio classification and adapting watermark embedding and detecting based on classification. Advances in audio watermark design include adaptive watermark signal structure data protocols, perceptual models, and insertion methods. Perceptual and robustness evaluation is integrated into audio watermark embedding to optimize audio quality relative the original signal, and to optimize robustness or data capacity. These methods are applied to audio segments in audio embedder and detector configurations to support real time operation. Feature extraction and matching are also used to adapt audio watermark embedding and detecting.
Abstract:
The present disclosure relates generally to image signal processing, including encoding signals for image data or artwork. A color blend/print model is used to predict signal detectability and visibility as is printed on a particular substrate, which facilitates object grading prior to print runs.
Abstract:
Audio signal processing enhances audio watermark embedding and detecting processes. Audio signal processes include audio classification and adapting watermark embedding and detecting based on classification. Advances in audio watermark design include adaptive watermark signal structure data protocols, perceptual models, and insertion methods. Perceptual and robustness evaluation is integrated into audio watermark embedding to optimize audio quality relative the original signal, and to optimize robustness or data capacity. These methods are applied to audio segments in audio embedder and detector configurations to support real time operation. Feature extraction and matching are also used to adapt audio watermark embedding and detecting.
Abstract:
This disclosure relates to advanced signal processing technology including steganographic embedding and digital watermarking. One combination disclosed in the description includes an image processing method. The method includes: obtaining an image comprising a plurality of color channels; for each color channel of the plurality of color channels, creating a grayscale version of the color channel and creating an inverted greyscale version of the color channel; analyzing the grayscale inverted version and the grayscale non-inverted version to locate image areas including an encoded signal, said analyzing yielding a plurality of image areas; generating one or more detectability measures corresponding to the encoded signal for each of the plurality of image areas; for each color channel selecting only one (1) image area as a validation point based on one or more generated detectability measures for that color channel; and generating information associated with a spatial location of each of the validation points in the image. Of course, other features and combinations are described as well.
Abstract:
In some arrangements, product packaging is digitally watermarked over most of its extent to facilitate high-throughput item identification at retail checkouts. Imagery captured by conventional or plenoptic cameras can be processed (e.g., by GPUs) to derive several different perspective-transformed views—further minimizing the need to manually reposition items for identification. Crinkles and other deformations in product packaging can be optically sensed, allowing such surfaces to be virtually flattened to aid identification. Piles of items can be 3D-modelled and virtually segmented into geometric primitives to aid identification, and to discover locations of obscured items. Other data (e.g., including data from sensors in aisles, shelves and carts, and gaze tracking for clues about visual saliency) can be used in assessing identification hypotheses about an item. Logos may be identified and used—or ignored—in product identification. A great variety of other features and arrangements are also detailed.
Abstract:
The disclosure relates to detecting digital watermarking from retail items such as from packaged items, containers, bottles, cans or boxes. One claim recites a method utilized at a retail checkout location comprising: receiving imagery representing a retail item from a digital camera, the retail item including digital watermarking encoded thereon, the retail item moving relative to the digital camera; determining a region in the imagery corresponding to at least one faster moving object relative to background imagery, said determining yielding a determined region; arranging digital watermark detection blocks over the determined region; and analyzing data representing imagery from within the digital watermark detection blocks to detect the digital watermarking. Of course other claims and combinations are also provided.
Abstract:
In some arrangements, product packaging is digitally watermarked over most of its extent to facilitate high-throughput item identification at retail checkouts. Imagery captured by conventional or plenoptic cameras can be processed (e.g., by GPUs) to derive several different perspective-transformed views—further minimizing the need to manually reposition items for identification. Crinkles and other deformations in product packaging can be optically sensed, allowing such surfaces to be virtually flattened to aid identification. Piles of items can be 3D-modelled and virtually segmented into geometric primitives to aid identification, and to discover locations of obscured items. Other data (e.g., including data from sensors in aisles, shelves and carts, and gaze tracking for clues about visual saliency) can be used in assessing identification hypotheses about an item. Logos may be identified and used—or ignored—in product identification. A great variety of other features and arrangements are also detailed.
Abstract:
In some arrangements, product packaging is digitally watermarked over most of its extent to facilitate high-throughput item identification at retail checkouts. Imagery captured by conventional or plenoptic cameras can be processed (e.g., by GPUs) to derive several different perspective-transformed views—further minimizing the need to manually reposition items for identification. Crinkles and other deformations in product packaging can be optically sensed, allowing such surfaces to be virtually flattened to aid identification. Piles of items can be 3D-modelled and virtually segmented into geometric primitives to aid identification, and to discover locations of obscured items. Other data (e.g., including data from sensors in aisles, shelves and carts, and gaze tracking for clues about visual saliency) can be used in assessing identification hypotheses about an item. Logos may be identified and used—or ignored—in product identification. A great variety of other features and arrangements are also detailed.
Abstract:
Methods employ sensors in portable devices (e.g., smartphones) both to sense content information (e.g., audio and imagery) and context information. Device processing is desirably dependent on both. For example, some embodiments activate certain processor intensive operations (e.g., content recognition) based on classification of sensed content and context. The context can control the location where information produced from such operations is stored, or control an alert signal indicating, e.g., that sensed speech is being transcribed. Some arrangements post sensor data collected by one device to a cloud repository, for access and processing by other devices. Multiple devices can collaborate in collecting and processing data, to exploit advantages each may have (e.g., in location, processing ability, social network resources, etc.). A great many other features and arrangements are also detailed.