Abstract:
Methods are provided for refining natural oil feedstocks. The methods include reacting the feedstock with a low-molecular-weight olefin or mid-weight olefin in the presence of a metathesis catalyst under conditions sufficient to form a metathesized product including olefins and esters. In certain embodiments, the methods further include separating the olefins from the esters in the metathesized product. In certain embodiments, the methods further include transesterifying the esters in the presence of an alcohol to form a transesterified product.
Abstract:
Methods and systems for making dibasic esters and/or dibasic acids using metathesis are generally disclosed. In some embodiments, the methods comprise reacting a terminal olefin ester with an internal olefin ester in the presence of a metathesis catalyst to form a dibasic ester and/or dibasic acid. In some embodiments, the terminal olefin ester or the internal olefin ester are derived from a renewable feedstock, such as a natural oil feedstock. In some such embodiments, the natural oil feedstock, or a transesterified derivative thereof, is metathesized to make the terminal olefin ester or the internal olefin ester.
Abstract:
Methods are provided for refining natural oil feedstocks and producing isomerized esters and acids. The methods comprise providing a C4-C18 unsaturated fatty ester or acid, and isomerizing the fatty acid ester or acid in the presence of heat or an isomerization catalyst to form an isomerized fatty ester or acid. In some embodiments, the methods comprise forming a dibasic ester or dibasic acid prior to the isomerizing step. In certain embodiments, the methods further comprise hydrolyzing the dibasic ester to form a dibasic acid. In certain embodiments, the olefin is formed by reacting the feedstock in the presence of a metathesis catalyst under conditions sufficient to form a metathesized product comprising olefins and esters, separating the olefins from the esters in the metathesized product, and transesterifying the esters in the presence of an alcohol to form a transesterified product having unsaturated esters.
Abstract:
Dibasic esters (diesters) and their use in plasticizer compositions are generally disclosed. In some embodiments, the diesters are branched-chain esters of long-chain alkanedioic acids, such as octadecanedioic acid. In some embodiments, such plasticizer compositions are used to increase the plasticity of a polymer resin, such as a vinyl chloride resin or poly vinyl butyral. In some other embodiments, such plasticizer compositions are used to lower the glass transition temperature of a polymer resin. In some embodiments, at least a portion of the plasticizer is derived from a renewable source, such as a natural oil.
Abstract:
Oligomers of certain glyceride compounds are generally disclosed herein. In some embodiments, the glyceride compounds include natural oil glycerides, such as glycerides derived from natural oils, such as palm oil, soybean oil, canola oil, and the like. Compositions containing such glyceride oligomers are also disclosed herein. Processes for making such glyceride oligomers are also disclosed herein. In some embodiments, the processes for making such compounds include reacting a plurality of unsaturated glyceride compounds in the presence of a metathesis catalyst.
Abstract:
A metathesized natural oil composition comprising (i) a mixture olefins and/or esters, or (ii) a metathesized natural oil, is disclosed. The metathesized natural oil composition has a number average molecular weight in the range from about 100 g/mol to about 150,000 g/mol, a weight average molecular weight in the range from about 1,000 g/mol to about 100,000 g/mol, a z-average molecular weight in the range from about 5,000 g/mol to about 1,000,000 g/mol, and a polydispersity index of about 1 to about 20. The metathesized natural oil composition is metathesized at least once.
Abstract:
High-purity dibasic acid compositions are generally disclosed. In some embodiments, the dibasic acid compositions are solutions or suspensions. In some other embodiments, the compositions are solid-state compositions. In some such embodiments, the solid-state compositions include a dibasic acid as a crystalline solid and further include a low quantity of certain impurities, such as monobasic acids, various esters, and the like. Methods and systems for making such high-purity dibasic acid compositions are also disclosed.
Abstract:
Methods for making specialty chemical products and chemical intermediates using hydroformylation are generally disclosed. Further, compositions and compounds formed using such methods are also disclosed. In some embodiments, methods are disclosed for refining a renewably sourced material, such as a natural oil, to form compositions, which can be further reacted employing the methods disclosed herein to form certain specialty chemical products or chemical intermediates.
Abstract:
Dibasic esters (diesters) and their use in plasticizer compositions are generally disclosed. In some embodiments, the diesters are branched-chain esters of long-chain alkanedioic acids, such as octadecanedioic acid. In some embodiments, such plasticizer compositions are used to increase the plasticity of a polymer resin, such as a vinyl chloride resin or poly vinyl butyral. In some other embodiments, such plasticizer compositions are used to lower the glass transition temperature of a polymer resin. In some embodiments, at least a portion of the plasticizer is derived from a renewable source, such as a natural oil.
Abstract:
A method for preparing a ruthenium carbene complex precursor includes reacting a ruthenium refinery salt with a hydrogen halide to form a ruthenium intermediate, and reacting the ruthenium intermediate with an L-type ligand to form the ruthenium carbene complex precursor. A method for preparing a ruthenium vinylcarbene complex includes converting a ruthenium carbene complex precursor into a ruthenium hydrido halide complex, and reacting the ruthenium hydrido halide complex with a propargyl halide to form the ruthenium vinylcarbene complex. A method for preparing a ruthenium carbene complex includes converting a ruthenium carbene complex precursor into a ruthenium carbene complex having a structure (PR1R2R3)2Cl2Ru═CH—R4, wherein R1, R2, R3, and R4 are alike or different, and wherein covalent bonds may optionally exist between two or more of R1, R2, and R3 and/or two of R1, R2, and R3 taken together may optionally form a ring with phosphorous.