Abstract:
A user, such as the driver of a vehicle, to retrieve information related to a point of interest (POI) near the vehicle by pointing at the POI or performing some other gesture to identify the POI. Gesture recognition is performed on the gesture to generate a target region that includes the POI that the user identified. After generating the target region, information about the POI can be retrieved by querying a server-based POI service with the target region or by searching in a micromap that is stored locally. The retrieved POI information can then be provided to the user via a display and/or speaker in the vehicle. This process beneficially allows a user to rapidly identify and retrieve information about a POI near the vehicle without having to navigate a user interface by manipulating a touchscreen or physical buttons.
Abstract:
Some embodiments provide systems and methods for enabling a learning implicit gesture control system for use by an occupant of a vehicle. The method includes identifying features received from a plurality of sensors and comparing the features to antecedent knowledge stored in memory. A system output action that corresponds to the features can then be provided in the form of a first vehicle output. The method further includes detecting a second vehicle output from the plurality of sensors and updating the antecedent knowledge to associate the system output action with the second vehicle output.
Abstract:
A method and apparatus for segmenting an image are provided. The method may include the steps of clustering pixels from one of a plurality of images into one or more segments, determining one or more unstable segments changing by more than a predetermined threshold from a prior of the plurality of images, determining one or more segments transitioning from an unstable to a stable segment, determining depth for one or more of the one or more segments that have changed by more than the predetermined threshold, determining depth for one or more of the one or more transitioning segments, and combining the determined depth for the one or more unstable segments and the one or more transitioning segments with a predetermined depth of all segments changing less than the predetermined threshold from the prior of the plurality of images.
Abstract:
A gesture control system includes a processor, the processor in communication with a plurality of sensors. The processor is configured to perform the steps of detecting, using the plurality of sensors, a gesture in a volume occupied by a plurality of occupants, analyzing a prior knowledge to associate the gesture with one of the plurality of occupants, and generating an output, the output being determined by the gesture and the one of the plurality of occupants.
Abstract:
A novel disparity computation technique is presented which comprises multiple orthogonal disparity maps, generated from approximately orthogonal decomposition feature spaces, collaboratively generating a composite disparity map. Using an approximately orthogonal feature set extracted from such feature spaces produces an approximately orthogonal set of disparity maps that can be composited together to produce a final disparity map. Various methods for dimensioning scenes and are presented. One approach extracts the top and bottom vertices of a cuboid, along with the set of lines, whose intersections define such points. It then defines a unique box from these two intersections as well as the associated lines. Orthographic projection is then attempted, to recenter the box perspective. This is followed by the extraction of the three-dimensional information that is associated with the box, and finally, the dimensions of the box are computed. The same concepts can apply to hallways, rooms, and any other object.
Abstract:
A method and system for generating a disparity map. The method comprises the steps of generating a first disparity map based upon a first image and a second image acquired at a first time, acquiring at least a third image and a fourth image at a second time, and determining one or more portions comprising a difference between one of the first and second images and a corresponding one of the third and fourth images. A disparity map update is generated for the one or more determined portions, and a disparity map is generated based upon the third image and the fourth image by combining the disparity map update and the first disparity map.
Abstract:
A method and system for segmenting a plurality of images. The method comprises the steps of segmenting the image through a novel clustering technique that is, generating a composite depth map including temporally stable segments of the image as well as segments in subsequent images that have changed. These changes may be determined by determining one or more differences between the temporally stable depth map and segments included in one or more subsequent frames. Thereafter, the portions of the one or more subsequent frames that include segments including changes from their corresponding segments in the temporally stable depth map are processed and are combined with the segments from the temporally stable depth map to compute their associated disparities in one or more subsequent frames. The images may include a pair of stereo images acquired through a stereo camera system at a substantially similar time.
Abstract:
A method and system for generating a disparity map. The method comprises the steps of generating a first disparity map based upon a first image and a second image acquired at a first time, acquiring at least a third image and a fourth image at a second time, and determining one or more portions comprising a difference between one of the first and second images and a corresponding one of the third and fourth images. A disparity map update is generated for the one or more determined portions, and a disparity map is generated based upon the third image and the fourth image by combining the disparity map update and the first disparity map.