Abstract:
A phase-change random access memory includes a memory block including a plurality of memory columns corresponding to the same column address and using different input/output paths; a redundancy memory block including a plurality of redundancy memory columns using different input/output paths; and an input/output controller repairing at least one of the plurality of memory columns using at least one of the plurality of redundancy memory columns, and controlling the number of memory columns simultaneously repaired using redundancy memory columns in response to an input/output repair mode control signal.
Abstract:
A non-volatile semiconductor memory device may include a memory cell array that may include a plurality of memory transistors; a input circuit that may control a voltage level of an internal reference voltage and a delay time of an internal clock signal in response to an MRS trim code or an electric fuse trim code, and that may generate a first buffered input signal; a column gate that may gate the first buffered input signal in response to a decoded column address signal; and a sense amplifier that may amplify an output signal of the memory cell array to output to the column gate, and that may receive an output signal of the column gate to output to the memory cell array. The non-volatile semiconductor memory device may properly buffer an input signal of a small swing range.
Abstract:
A nonvolatile memory device and a method of driving the same are provided, which adopt an improved write operation. The method of driving a nonvolatile memory device includes providing the nonvolatile memory device including a plurality of memory banks each having a plurality of local bit lines and a plurality of variable resistance memory cells; selectively connecting read global bit lines for reading data with the local bit lines, and firstly discharging the selectively connected local bit lines by turning on local bit line discharge transistors coupled to the read global bit lines; and selectively connecting write global bit lines for writing data with the local bit lines, and secondly discharging the selectively connected local bit lines by turning on global bit line discharge transistors.
Abstract:
A semiconductor memory device includes a plurality of phase change memory cells connected to the same bitline and different respective word lines. A read operation is performed on one of the memory cells by selecting the bitline and a corresponding wordline. While the read operation is performed, leakage current produced by non-selected memory cells is detected by a leakage detecting circuit and compensated by a leakage current supply circuit.
Abstract:
Semiconductor packages including stacked semiconductor chips are provided. The semiconductor packages may include first semiconductor chips and a second semiconductor chip that are stacked sequentially on a board. The semiconductor packages may also include a wiring layer on the memory chips and the wiring layer may include redistribution patterns and redistribution pads. Each of the memory chips may include a data pad. The data pads of the first semiconductor chips may be electrically connected to the board via the second semiconductor chip, some of redistribution patterns, and some of redistribution pads.
Abstract:
Disclosed are a humidity sensor and a fabricating method thereof. The humidity sensor includes a substrate, an anodic aluminum oxide layer formed on the substrate and having a plurality of holes, and electrodes formed on the anodic aluminum oxide layer, in order to improve sensitivity and accuracy of the humidity sensor. Further, the fabricating method of a humidity sensor includes preparing an aluminum substrate, forming an anodic aluminum oxide layer by oxidizing the aluminum substrate, and forming electrodes on the anodic aluminum oxide layer.
Abstract:
A non-volatile memory device using a variable resistive element is provided. The non-volatile memory device includes a memory cell array having a plurality of non-volatile memory cells, a first voltage generator configured to generate a first voltage, a voltage pad configured to receive an external voltage that has a level higher than the first voltage, a write driver configured to be supplied with the external voltage and configured to write data to the plurality of non-volatile memory cells selected from the memory cell array; a sense amplifier configured to be supplied with the external voltage and configured to read data from the plurality of non-volatile memory cells selected from the memory cell array, and a row decoder and a column decoder configured to select the plurality of non-volatile memory cells included in the memory cell array, the row decoder being supplied with the first voltage and the column decoder being supplied with the external voltage.
Abstract:
Disclosed is a semiconductor memory device including a memory cell array having a plurality of variable resistance memory cells divided into first and second areas. An I/O circuit is configured to access the memory cell array under the control of control logic so as to access the first or second area in response to an external command. The I/O circuit accesses the first area using a memory cell unit and the second area using a page unit.
Abstract translation:公开了一种半导体存储器件,包括具有分成第一和第二区域的多个可变电阻存储器单元的存储单元阵列。 I / O电路被配置为在控制逻辑的控制下访问存储单元阵列,以响应于外部命令访问第一或第二区域。 I / O电路使用存储单元单元访问第一区域,并且使用页面单元访问第二区域。
Abstract:
A method of writing data in a phase change memory includes receiving write data to be written to a selected phase change memory cell in the plurality of phase change memory cells, sensing data stored in the selected phase change memory cell, determining whether or not the sensed data is equal to the write data, and if the sensed data is not equal to the write data, iteratively applying a write current to the selected phase change memory cell, wherein a resistance state of the phase change memory cell is changed by heat corresponding to a level of the write current, and the level of the write current is changed between successive iterative applications.
Abstract:
A phase-change random access memory includes a memory block including a plurality of memory columns corresponding to the same column address and using different input/output paths; a redundancy memory block including a plurality of redundancy memory columns using different input/output paths; and an input/output controller repairing at least one of the plurality of memory columns using at least one of the plurality of redundancy memory columns, and controlling the number of memory columns simultaneously repaired using redundancy memory columns in response to an input/output repair mode control signal.