Abstract:
Normally closed (shut) micro-electro-mechanical switches (MEMS), methods of manufacture and design structures are provided. A structure includes a beam structure that includes a first end hinged on a first electrode and in electrical contact with a second electrode, in its natural state when not actuated.
Abstract:
A high resistivity substrate final resistance test structure, methods of manufacture and testing processes are disclosed. The test structure includes spaced apart implants extending into a high resistivity wafer in at least one kerf region of the wafer. The test structure further includes contacts in direct electrical contact to each of the spaced apart implants.
Abstract:
Switchable and/or tunable filters, methods of manufacture and design structures are disclosed herein. The method of forming the filters includes forming at least one piezoelectric filter structure comprising a plurality of electrodes formed on a piezoelectric substrate. The method further includes forming a micro-electro-mechanical structure (MEMS) comprising a MEMS beam formed above the piezoelectric substrate and at a location in which, upon actuation, the MEMS beam shorts the piezoelectric filter structure by contacting at least one of the plurality of electrodes.
Abstract:
A field effect transistor (FET) with an underlying airgap and methods of manufacture are disclosed. The method includes forming an amorphous layer at a predetermined depth of a substrate. The method further includes forming an airgap in the substrate under the amorphous layer. The method further includes forming a completely isolated transistor in an active region of the substrate, above the amorphous layer and the airgap.
Abstract:
A semiconductor structure with low resistance conduction paths and methods of manufacture are disclosed. The method includes forming at least one low resistance conduction path on a wafer, and forming an electroplated seed layer in direct contact with the low resistance conduction path.
Abstract:
Bulk acoustic wave filters and/or bulk acoustic resonators integrated with CMOS devices, are provided. The structure includes a single crystalline beam formed from a silicon layer of a silicon on insulator (SOI) substrate; insulator material coating the single crystalline beam; an upper cavity formed above the single crystalline beam, over a portion of the insulator material; a lower cavity formed in lower wafer bonded to an insulator layer of the SOI substrate, below the single crystalline beam and the insulator layer of the SOI substrate; a connecting via that connects the upper cavity to the lower cavity, the connecting via being coated with the insulator material; and a Bulk Acoustic Wave (BAW) filter or Bulk Acoustic Resonator (BAR) in electrical connection with the single crystalline beam.
Abstract:
Switchable and/or tunable filters, methods of manufacture and design structures are disclosed herein. The method of forming the filters includes forming at least one piezoelectric filter structure comprising a plurality of electrodes formed on a piezoelectric substrate. The method further includes forming a micro-electro-mechanical structure (MEMS) comprising a MEMS beam formed above the piezoelectric substrate and at a location in which, upon actuation, the MEMS beam shorts the piezoelectric filter structure by contacting at least one of the plurality of electrodes.
Abstract:
Vertical integrated MEMS switches, design structures and methods of fabricating such vertical switches is provided herein. The method of manufacturing a MEMS switch, includes forming at least two vertically extending vias in a wafer and filling the at least two vertically extending vias with a metal to form at least two vertically extending wires. The method further includes opening a void in the wafer from a bottom side such that at least one of the vertically extending wires is moveable within the void.
Abstract:
Bulk acoustic wave filters and/or bulk acoustic resonators integrated with CMOS devices, methods of manufacture and design structure are provided. The method includes forming a single crystalline beam from a silicon layer on an insulator. The method further includes providing a coating of insulator material over the single crystalline beam. The method further includes forming a via through the insulator material. The method further includes providing a sacrificial material in the via and over the insulator material. The method further includes providing a lid on the sacrificial material. The method further includes providing further sacrificial material in a trench of a lower wafer. The method further includes bonding the lower wafer to the insulator, under the single crystalline beam. The method further includes venting the sacrificial material and the further sacrificial material to form an upper cavity above the single crystalline beam and a lower cavity, below the single crystalline beam.
Abstract:
Disclosed are methods for forming a thin film resistor and terminal bond pad simultaneously. A method includes simultaneously forming a terminal bond pad on a terminal wire and a thin film resistor on two other wires.