Abstract:
An input detection system includes a detection device including a plurality of sensor electrodes arrayed in a detection region, an input support device including an LC circuit, a first electrode coupled to one end side of the LC circuit, and a second electrode coupled to another end side of the LC circuit, and a control circuit including a drive signal supply circuit supplying a drive signal to the sensor electrodes and an adjustment circuit coupled to the sensor electrodes. The adjustment circuit adjusts a circuit constant that is added to a capacitance between the sensor electrode and the first electrode or the second electrode facing the sensor electrode.
Abstract:
According to an example aspect, an electronic device comprises a substrate, pixels on the substrate, a first electrode overlapping the pixels in a plan view, and a second electrode overlapping an edge of the first electrode in a plan view. The first electrode has a first region that overlaps the second electrode in a plan view and a second region that does not overlap the second electrode in a plan view.
Abstract:
A display device with a touch sensor having a display function and a touch sensor function is provided. The display device includes a first substrate including a pixel electrode; a first electrode along a first direction; and a second substrate including a second electrode that includes patterns of electrodes along a second direction crossing the first direction and that faces the first electrode and the pixel electrode, wherein upon the display function being activated, the pixel electrode is supplied with a pixel signal, and the second electrode is supplied with common voltage, and upon the touch sensor function being activated, the first electrode is applied with a first signal and the second electrode is configured to receive the first signal to be a second signal as a touch detecting signal.
Abstract:
A touch-sensor-equipped display device has: a panel unit including a screen area in which units of detection constituting a touch-sensor function and pixels constituting a display function are formed in a matrix pattern; a plurality of shared electrodes which are formed in the screen area, parallel to an X-direction, and for both display drive and touch drive; a plurality of common electrodes for display drive which are parallel to the X-direction and respectively alternately disposed with the plurality of respective shared electrodes in a Y-direction; a plurality of detection electrodes which are parallel to the Y-direction and intersecting with the plurality of shared electrodes and the plurality of common electrodes; and the units of detection corresponding to respective capacitors formed by intersections of the plurality of shared electrodes and the plurality of detection electrodes.
Abstract:
According to an aspect, a display device with a touch sensor has a display function and a touch sensor function. The display device includes: a panel unit that comprises a first substrate, a second substrate, and a display function layer between the first substrate and the second substrate; a first electrode on the first substrate; a second electrode on the second substrate; a third electrode on the second substrate; and a capacitor for the touch sensor function. The capacitor is formed between either of the first electrode and the second electrode and the third electrode, or between both the first electrode and the second electrode and the third electrode. The frame portion outside the display area comprises, on the first substrate side thereof, a peripheral circuit, and the second electrode is provided in a position more distant upward from the peripheral circuit than the first electrode.
Abstract:
According to one embodiment, the touch drive device includes a plurality of drive electrodes arranged side by side to extend in a single direction, a detection electrode which extends in a direction crossing the direction in which the drive electrodes extend, and generates capacitances at intersections of the detection electrode and the drive electrodes, and a driver (DDI) which groups the drive electrodes into a plurality of drive electrode portions each including at least one drive electrode, and performs a touch scanning drive by supplying a touch drive signal (TSVCOM) having a pulse waveform for detection of a closely situated external object to a target drive electrode portion which is a selected one of the drive electrode portions. The number of the drive electrodes included in each of the drive electrode portions and the target drive electrode portion to which the touch drive signal. (TSVCOM) is supplied can be designated.
Abstract:
According to one embodiment, the touch drive device includes a plurality of drive electrodes arranged side by side to extend in a single direction, a detection electrode which extends in a direction crossing the direction in which the drive electrodes extend, and generates capacitances at intersections of the detection electrode and the drive electrodes, and a driver (DDI) which groups the drive electrodes into a plurality of drive electrode portions each including at least one drive electrode, and performs a touch scanning drive by supplying a touch drive signal (TSVCOM) having a pulse waveform for detection of a closely situated external object to a target drive electrode portion which is a selected one of the drive electrode portions. The number of the drive electrodes included in each of the drive electrode portions and the target drive electrode portion to which the touch drive signal (TSVCOM) is supplied can be designated.
Abstract:
According to one embodiment, the touch drive device includes a plurality of drive electrodes arranged side by side to extend in a single direction, a detection electrode which extends in a direction crossing the direction in which the drive electrodes extend, and generates capacitances at intersections of the detection electrode and the drive electrodes, and a driver (DDI) which groups the drive electrodes into a plurality of drive electrode portions each including at least one drive electrode, and performs a touch scanning drive by supplying a touch drive signal (TSVCOM) having a pulse waveform for detection of a closely situated external object to a target drive electrode portion which is a selected one of the drive electrode portions. The number of the drive electrodes included in each of the drive electrode portions and the target drive electrode portion to which the touch drive signal (TSVCOM) is supplied can be designated.
Abstract:
According to one embodiment, a touch detection device includes a plurality of drive electrodes, a plurality of detection electrodes, a display driver which performs a touch scanning drive by supplying a touch drive signal to a target drive electrode to be driven, and a touch driver which transmits and receives a signal to and from the display driver, wherein at least one of the number of pulses of the drive synchronizing signal and a pulse width of each of the pulses of the drive synchronizing signal is determined based on the signal received from the display driver.
Abstract:
According to an aspect, a liquid crystal display device with a touch sensor has a liquid crystal display function and a touch sensor function. The liquid crystal device includes a first substrate including a pixel electrode and a first electrode; a second substrate including a second electrode; and a liquid crystal layer provided between the first substrate and the second substrate. When the liquid crystal display function is activated, the first and second electrodes are supplied with common voltage. When the touch sensor function is activated, the first electrode is applied with a first signal, and a second signal is detected through the second electrode.