Abstract:
The present invention discloses a method and an arrangement for scanning microscopic specimens (15) with a scanning device. The microscopic specimen (15) is displaceable on a specimen stage (35) in at least two spatial directions. A light beam (3) scans the specimen (15) within a defined scan field (52) by way of a scanning module (7), and the light (17) proceeding from the specimen is detected. A PC (34) is also provided for analysis and calculation. The scan field (52) is defined in such a way that it incompletely encompasses a specimen region that is to be examined. Means (23, 31) are provided which displace the specimen stage (35) in such a way that the entire specimen region of interest can be covered by the plurality of resulting scan fields (521, 522, . . . 52n). The data of the individual scan fields (521, 522, . . . 52n) detected from the specimen region being examined are assembled in the PC (34) into an overall image.
Abstract:
A light source for illumination in scanning microscopy, and a scanning microscope contain an electromagnetic energy source that emits light of one wavelength, and a beam splitter for spatially dividing the light into at least two partial light beams. An intermediate element for wavelength modification is provided in at least one partial light beam.
Abstract:
A method for illuminating an object (79). The method is characterized by the steps of injecting (1) the light beam (13) from a laser (9) into a microstructured optical element (19), which spectrally broadens the light of the light beam (13), shaping (3) the spectrally broadened light (31) to form an illumination light beam (29), and directing (5) the illumination light beam (29) onto the object (79). An instrument (7) for illuminating an object (79). The instrument comprises a laser (9) that emits a light beam (13), which is directed onto a microstructured optical element (19) that spectrally broadens the light from the laser. A optical means (33) which shapes the spectrally broadened light (31) to form an illumination light beam (29) is arranged downstream of the microstructured optical element (19).
Abstract:
A confocal scanning microscope has an illuminating beam path and at least one light source. The light of the light source is coupled into a fiber in which laser transitions can be induced. At least laser light induced in the fiber serves for specimen illumination after passing through an excitation pinhole.
Abstract:
A method for examining a specimen (11) by means of a confocal scanning microscope having at least one light source (1), preferably a laser, to generate an illuminating light beam (4) for the specimen (11), and a beam deflection device (9) to guide the illuminating light beam (4) over the specimen (11) comprises the following method steps: Firstly a preview image is acquired. Then at least one region of interest in the preview image is marked. This is followed by allocation of individual illuminating light beam wavelengths and/or illuminating light beam power levels to the region or regions. Illumination of the region or regions of the specimen (11) in accordance with the allocation is then accomplished. Lastly, the reflected and/or fluorescent light proceeding from the specimen (11) is detected.
Abstract:
A method and an apparatus for phase correction of position and detection signals in scanning microscopy. The method includes generation of a position signal from the position of a beam deflection device (7) and generation, from the light (17) proceeding from the specimen (15), of a detection signal pertinent to the position signal. The position signal and detection signal are then transferred to a processing unit (23). In the processing unit (23), a correction value is determined. The correction value is transferred to a computer (34) to compensate for time differences between the position signal and detection signal.
Abstract:
The apparatus for objective changing comprises an inventory of at least one objective (5) which defines a longitudinal axis (6). The objective change between an objective storage position (22) and a reference objective position (5a) is made possible by the apparatus, and the reference objective position (5a) lies within an optical beam path that defines an optical axis (3). A retaining element defines the reference objective position (5a), and during the objective change, the objective (5) with its longitudinal axis (6) is movable, in the vicinity of the retaining element (26), substantially coaxially with the optical axis (3). The objective change is accomplished along a guide rail (17).
Abstract:
The invention discloses an entangled-photon microscope (1) having a light source (3) and an objective (31). The entangled-photon microscope (1) has a microstructured optical element (11), in which entangled photons can be produced, between the light source (3) and the objective (31), the entangled photons propagating in a beam (15) inside and outside the microstructured optical element.
Abstract:
An optical arrangement for at least partial spectral selection of light components from a polychromatic light beam (1) is configured, in the interest of multifarious spectral selection capabilities, with means of simple design in such a way that a dispersive medium (2) for spatial spectral spreading of the polychromatic light beam (1) into individual light bundles (3), and an attenuation means (5, 6) for at least partial attenuation of the intensity of one or more light bundles (3), are provided.
Abstract:
A microscope with an objective turret (2) carrying an objective (1) and with a specimen holder (4) serving to receive a specimen (3), in order to assure an undesired transport of heat between the specimen (3) and the objective (1), is characterized by the fact that all objectives (1) carried by the objective turret (2) are simultaneously adjusted for temperature by means of the objective turret (2).